Skip to main content
Log in

Morphology and properties of low-carbon bainite

  • Published:
Metallurgical Transactions A Aims and scope Submit manuscript

Abstract

Morphology of low-carbon bainite in commercial-grade high-tensile-strength steels in both isothermal transformation and continuous cooling transformation is lathlike ferrite elongated in the 〈11l〉b direction. Based on carbide distribution, three types of bainites are classified: Type I, is carbide-free, Type II has fine carbide platelets lying between laths, and Type III has carbides parallel to a specific ferrite plane. At the initial stage of transformation, upper bainitic ferrite forms a subunit elongated in the [−101]f which is nearly parallel to the [lll]b direction with the cross section a parallelogram shape. Coalescence of the subunit yields the lathlike bainite with the [−101]f growth direction and the habit plane between (232)f and (lll)f. Cementite particles precipitate on the sidewise growth tips of the Type II bainitic ferrite subunit. This results in the cementite platelet aligning parallel to a specific ferrite plane in the laths after coalescence. These morphologies of bainites are the same in various kinds of low-carbon high-strength steels. The lowest brittle-ductile transition temperature and the highest strength were obtained either by Type III bainite or bainite/martensite duplex structure because of the crack path limited by fine unit microstructure. It should also be noted that the tempered duplex structure has higher strength than the tempered martensite in the tempering temperature range between 200 °C and 500 °C. In the case of controlled rolling, the accelerated cooling afterward produces a complex structure comprised of ferrite, cementite, and martensite as well as BI-type bainite. Type I bainite in this structure is refined by controlled rolling and plays a very important role in improving the strength and toughness of low-carbon steels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. A.B. Greninger and A.R. Troiano:Trans. TMS-AIME, 1940, vol. 140, pp. 307–36. 2. W. Hume-Rothery: The Structures of Alloys of Iron, 1966, Pergamon Press, London, p. 246.

    Google Scholar 

  2. Y. Ohmori, H. Ohtani, and T. Kunitake:Trans. Iron Steel Inst. Jpn., 1971, vol. 11, pp. 250–59.

    CAS  Google Scholar 

  3. R.W.K. Honeycombe and F.B. Pickering:Metall. Trans., 1972, vol. 3, pp. 1099–1112.

    Article  CAS  Google Scholar 

  4. N.F. Kennon:Metall. Trans. A, 1978, vol. 9A, pp. 57–66.

    CAS  Google Scholar 

  5. A.T. Davenport:Proc. Int. Conf. Solid-Solid Phase Transformations, Pittsburgh, PA, 1981; as referred to by M. Srikaya and G.Thomas:J.Phys. Colloq., 1982, Supp. 12, Tome 43, pp. C4, 563-68.

  6. S.J. Matas and R.F. Heheman:Trans. TMS-AIME, 1961, vol. 221, pp. 179–85.

    CAS  Google Scholar 

  7. R.I. Entin: inDecomposition of Austenite by Diffusional Processes, H.I. Aaronson, ed., 1962, pp. 295-311.

  8. J.M. Oblak and R.F. Heheman:Transformation and Hardenability in Steels, Climax Molybdenum Company, Ann Arbor, MI, 1967, pp. 15–29.

    Google Scholar 

  9. R. Le Houillier, C. Bégin, and A. Dubé:Metall. Trans., 1971, vol. 2, pp. 2645–53.

    Article  Google Scholar 

  10. E.P. Simonen, H.I. Aaronson, and R. Trivedi:Metall. Trans., 1973, vol. 4, pp. 1239–45.

    CAS  Google Scholar 

  11. H.K.D.H. Bhadeshia and D.V. Edmonds:Metall. Trans. A, 1979, vol. 10A, pp. 895–907.

    CAS  Google Scholar 

  12. H.K.D.H. Bhadeshia and D.V. Edmonds:Met. Sei., 1983, vol. 17, pp. 411–19.

    Article  CAS  Google Scholar 

  13. G. Papadimitriou and J.M. Génin:Abstr. of Int. Conf. Martensitic Transformations (ICOMAT-86), Japan Institute of Metals, 1986, pp. 607-12.

  14. K. Shimizu, T. Ko, and Z. Nishiyama:Trans. Jpn. Inst. Met., 1964, vol. 221, pp. 225–30.

    Google Scholar 

  15. F.B. Pickering:Transformation and Hardenability in Steels, Climax Molybdenum Company, Ann Arbor, MI, 1967, pp. 109–29.

    Google Scholar 

  16. H. Ohtani, F. Terasaki, and T. Kunitake:Trans. Iron Steel Inst. Jpn., 1972, vol. 12, pp. 118–27.

    Google Scholar 

  17. Y. Ohmori, H. Ohtani, and T. Kunitake:Met. Sei., 1974, vol. 8, pp. 357–66.

    Article  CAS  Google Scholar 

  18. Y. Ohmori, H. Ohtani, and T. Kunitake:Trans. Iron Steel Inst. Jpn., 1972, vol. 12, pp. 146–54.

    CAS  Google Scholar 

  19. Y. Ohmori:Phil. Mag. A, 1988, vol. 57, pp. 337–49.

    CAS  Google Scholar 

  20. G.V. Kurdjumov and G. Sachs:Zeit. Phys., 1930, vol. 64, pp. 325–43.

    Article  Google Scholar 

  21. Y. Ohmori:Trans. Iron Steel Inst. Jpn., 1973, vol. 13, pp. 56–62.

    CAS  Google Scholar 

  22. Der-Hung Huang and Gareth Thomas:Metall. Trans. A, 1977, vol. 8A, pp. 1661–74.

    CAS  Google Scholar 

  23. B.L. Bramfitt and J.G. Speer:Metall. Trans. A, 1990, vol. 21A, pp. 817–29.

    CAS  Google Scholar 

  24. Y. Fujishiro, T. Hashimoto, and H. Ohtani:Tetsu-to-Hagané, 1989, vol. 75, pp. 143–50.

    CAS  Google Scholar 

  25. F. Terasaki and H. Ohtani:Trans. Iron Steel Inst. Jpn., 1972, vol. 12, pp. 45–53.

    CAS  Google Scholar 

  26. J.R. Rellick and C.J. McMahon, Jr.:Metall. Trans., 1974, vol. 5, pp. 2439–50.

    Article  CAS  Google Scholar 

  27. T. Tsumura and H. Ohtani:J. Jpn. Soc. Heat-Treat., 1988, vol. 28, pp. 213–19.

    CAS  Google Scholar 

  28. A. Bagaryatskii:Dokl. Akad. Nauk SSSR, 1950, vol. 73, p. 1161 ; referred to by K.W. Andrews: Acta Metall., 1950, vol. 11, pp. 939-46.

    CAS  Google Scholar 

  29. Y. Ohmori, A.T. Davenport, and R.W.K. Honeycombe:Trans. Iron Steel Inst. Jpn., 1972, vol. 12, pp. 128–37.

    CAS  Google Scholar 

  30. W. Pitsch:Arch. Eisenhuettenwes., 1963, vol. 34, pp. 641–45.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This paper is based on a presentation made in the symposium “International Conference on Bainite” presented at the 1988 World Materials Congress in Chicago, IL, on September 26 and 27, 1988, under the auspices of the ASM INTERNATIONAL Phase Transformations Committee and the TMS Ferrous Metallurgy Committee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ohtani, H., Okaguchi, S., Fujishiro, Y. et al. Morphology and properties of low-carbon bainite. Metall Trans A 21, 877–888 (1990). https://doi.org/10.1007/BF02656571

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02656571

Keywords

Navigation