Skip to main content
Log in

Serrated grain boundary formation potential of Ni-based superalloys and its implications

  • Published:
Metallurgical Transactions A Aims and scope Submit manuscript

Abstract

The serrated grain boundary formation potential of a large number of conventionally forged, powder processed, and investment cast Ni-based superalloys is reviewed. A mechanism of serrated grain boundary formation by which grain boundaryγ′ particles move and displace the local grain boundary segment is discussed and the prerequisite conditions for its occurrence are highlighted. The practical implications of the serrated grain boundary formation are also discussed. It is suggested that modifying the existing heat-treatment cycles in some investment cast and powder processed Ni-based superalloys would improve their properties. The possibility of minimizing weld cracking in superalloys by creating serrated grain boundaries in the base metal and the heat affected zone is also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. K. H. Tu and D. Turnbull:Acta Metall., 1967, vol. 15, p. 369.

    Article  CAS  Google Scholar 

  2. R.A. Fournelle and J.B. Clark:Metall. Trans., 1972, vol. 3, p. 2757.

    CAS  Google Scholar 

  3. D. A. Porter and K. E. Easterling:Phase Transformations in Metals and Alloys, 1st ed., Van Nostrand Reinhold Co., New York, NY, 1981, p. 322.

    Google Scholar 

  4. M. Tamazaki:J. Japan Inst. of Metals, 1966, vol. 30, p. 1032.

    Google Scholar 

  5. J. M. Larson:Metall. Trans. A, 1976, vol. 7A, p. 1497.

    CAS  Google Scholar 

  6. J. M. Larson and S. Floreen:Metall. Trans. A, 1977, vol. 8A, p. 51.

    CAS  Google Scholar 

  7. J. Beddoes and W. Wallace:Metallography, 1980, vol. 13, p. 185.

    Article  CAS  Google Scholar 

  8. A. K. Koul and D. Morphy:Microstructural Science, 1982, vol. 11, p. 79.

    Google Scholar 

  9. A. K. Koul and G. H. Gessinger:Acta Metall., 1983, vol. 31, no. 7, p. 1061.

    Article  CAS  Google Scholar 

  10. H. E. Collins:Trans-ASM, 1969, vol. 62, p. 82.

    CAS  Google Scholar 

  11. F. Schubert:Phase Stability in High Temperature Alloys, V. Guttmann, ed., Applied Science Publishers Ltd., London, 1981, p. 119.

    Google Scholar 

  12. R.F. Decker and C.T. Sims:The Superalloys, C.T. Sims and W.C. Hagel, eds., John Wiley and Sons, New York, NY, 1972, pp. 33, 600, and 604.

    Google Scholar 

  13. B.J. Piercey and R. W. Smashey:TMS-AIME, 1967, vol. 239, p. 451.

    Google Scholar 

  14. H.E. Collins and R.J. Quigg:Trans. ASM, 1968, vol. 61, p. 139.

    CAS  Google Scholar 

  15. W. H. Chang:Proc. of the Second Int. Conf. on Superalloys, Seven Springs, PA, Sept. 18–20, 1972, p. V-l.

    Google Scholar 

  16. R.T. Holt, K. Rajan, and W. Wallace: NAE-NRC Report, LTR-ST-625, July 1973.

  17. C.H. White:The Nimonic Alloys, W. Betteridge and J. Heslop, eds., Edward Arnold, London, 2nd ed., 1974, p. 63.

    Google Scholar 

  18. L. A. Weisenberg and R. J. Morris:Met. Prog., 1960, vol. 78, p. 70.

    Google Scholar 

  19. R.E. Bailey:Proc. of the Second Int. Conf. on Superalloys, Seven Springs, PA, Sept. 18–20, 1972, p. J-l.

    Google Scholar 

  20. J. A. Domingue, W. J. Boesch, and J. F. Radavich:Proc. of the Fourth Int. Conf. on Superalloys, Seven Springs, PA, Sept. 21–25, 1980, p. 335.

    Google Scholar 

  21. L. A. Jackman, H.B. Canada, and F.E. Sczerzenie:ibid., p. 365.

    Google Scholar 

  22. M. J. Donachie, A. A. Pinkowish, W. P. Danesi, J. F. Radavich, and W.H. Couts:Metall. Trans., 1970, vol. 1, p. 2623.

    Google Scholar 

  23. D.M. Moon and R. Stickler: Proc. Symp. on ‘Phase Stability in Superalloys’, Baden, March 1973.

  24. A. K. Koul: unpublished work, NAE-NRC, Ottawa, Canada, 1982.

  25. J. M. Larson:Modern Developments in Powder Metallurgy, Princeton, NJ, MPIF/American Powder Metallurgy Institute, 1974, vol. 8, p. 537.

    Google Scholar 

  26. C. J. Burton:Proc. Third Int. Conf. on Superalloys, Seven Springs, PA, Sept. 12–15, 1976, p. 147.

    Google Scholar 

  27. C.H. Symonds, J.W. Eggar, G.J. Lewis, and R.J. Siddall:Powder Metallurgy Superalloys, Zurich, Switzerland, Nov. 1980, vol. 2, paper no. 20.

  28. J. F. Barker and E. H. Van Der Molen:Proc. Second Int. Conf. on Superalloys, Seven Springs, PA, Sept. 18–20, 1972, p. AA1.

    Google Scholar 

  29. “Atlas of Microstructures of Industrial Alloys”,Metals Handbook, ASM, 1972, vol. 7, p. 191.

  30. W. Wallace, T. Terada, and M.S. Grzedzielski: NAE-NRC Report, LTR-ST-501, Nov. 1971.

  31. J-P. A. Immarigeon, W. Wallace, and G. Van Drunen:Proc. Third Int. Symp. on Superalloys, Seven Springs, PA, Sept. 12–15, 1976, p. 463.

    Google Scholar 

  32. W. Wallace and E. P. Whelan: NAE-NRC Report, LTR-ST-574, Sept. 1972.

  33. Y. Shimanuki, Y. Nishimo, M. Masui, and H. Doi:J. of the Jap. Soc. of Powder and Powder Met., 1978, vol. 25, no. 8, p. 14.

    Google Scholar 

  34. R. Thamburaj, W. Wallace, Y. N. Chari, and T. L. Prakash:Powder Met., 1984, vol. 27, no. 3, p. 169.

    CAS  Google Scholar 

  35. W. A. Owczarski and C. P. Sullivan:Welding Journal, 1965, vol. 44, no. 6, p. 241-s.

    Google Scholar 

  36. J. C. Runkle and R. M. Pelloux:Fatigue Mechanisms, ASTM STP 675, 1979.

  37. A. K. Koul and W. Wallace:Metall. Trans. A, 1982, vol. 13A, p. 673.

    Google Scholar 

  38. K. Cheng, C. C. Leach, and A. K. Koul: “Maintenance in Service of High Temperature Parts”, AGARD CP 317, Netherlands, Sept. 1981, paper no. 10.

  39. M. N. Menon and W.H. Reimann:J. of Materials Science, 1975, vol. 10, pp. 1571–81.

    Article  CAS  Google Scholar 

  40. D.B. Arnold: “Advanced Fabrication Techniques in Powder Metal-lurgy and Their Economic Implications”, AGARD Conf. Proc. No. 200, Nov. 1976, p. 6-1.

  41. G. J. Lewis, D. M. Parkin, and F. A. Thompson:Forging and Proper-ties of Aerospace Materials, London, TMS, Warrendale, PA, 1978, p. 399.

    Google Scholar 

  42. R. Thamburaj, W. Wallace, and J.A. Goldak:Int. Met. Reviews, 1983, vol. 28, no. 1, p. 1.

    CAS  Google Scholar 

  43. Aerospace Structural Metals Handbook, Dept. of Defence, Belfour Stulen Inc., Dec. 1982, vols. 4 and 5, codes 1401-4226.

  44. H. M. Fox:Modern Developments in Powder Metallurgy, Princeton, NJ, MPIF/American Powder Metallurgy Institute, 1974, vol. 8, p. 491.

    Google Scholar 

  45. S. Bashir, P. Taupin, and S.D. Antolovich: Metall. Trans. A, 1979, vol. 10A, p. 1481.

    CAS  Google Scholar 

  46. R.M. Wallace, C.G. Annis, and D.L. Sims: AFML-TR-76-176, Part 2, Air Force Materials Laboratory, Wright Patterson Air Force Base, OH, 1977.

    Google Scholar 

  47. J. C. Runkle: Ph.D. Diss., 1978, Massachusetts Institute of Tech-nology, Cambridge, MA.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Koul, A.K., Thamburaj, R. Serrated grain boundary formation potential of Ni-based superalloys and its implications. Metall Trans A 16, 17–26 (1985). https://doi.org/10.1007/BF02656707

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02656707

Keywords

Navigation