Skip to main content
Log in

Modeling of corrosion fatigue crack initiation under passive electrochemical conditions

  • Published:
Metallurgical Transactions A Aims and scope Submit manuscript

Abstract

A combined mechanical/electrochemical model has been developed which successfully predicts the corrosion fatigue initiation behavior of an iron-base superalloy using readily measurable electrochemical and mechanical properties. In particular, the model uses the current decay curve, the initial or bare metal corrosion rate, and the critical slip step height, a parameter associated with the transition from an intense slip band to an incipient crack. The exponential parameter,α, used to fit the early (short time) portion of the current decay curve has been found to scale with the fatigue crack initiation time, suggesting thatα could be used as a valuable screening aid to assess the corrosion fatigue susceptibility of any alloy under passive electrochemical conditions. The model permits accurate prediction of both the shape and magnitude of fatigue life (S-N) curves. The limitations and theoretical implications of the approach of this model are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Mueller:Corrosion, 1982, vol. 38, pp. 431–36.

    CAS  Google Scholar 

  2. M. Mueller:Metall. Trans. A, 1982, vol. 13A, pp. 649–55.

    Google Scholar 

  3. T. Pyle, V. Rollins, and D. Howard:J. Electrochem. Soc., 1975, vol. 122, pp. 1445–53.

    Article  CAS  Google Scholar 

  4. C. Patel, T. Pyle, and V. Rollins:Met. Sci., 1977, vol. 11, pp. 185–95.

    Article  CAS  Google Scholar 

  5. C. Laird and J. Duquette: inCorrosion Fatigue (NACE-2), O. Devereux, A.J. McEvily, and R.W. Staehle, eds., NACE, Houston, TX, 1972, pp. 88–115.

    Google Scholar 

  6. J.C. Scully: inEnvironment-Sensitive Fracture of Engineering Materials, Z.A. Foroulis, ed., TMS-AIME, Warrendale, PA, 1979, pp. 71–90.

    Google Scholar 

  7. T. Nakayama and M. Takano:Corrosion, 1986, vol. 42, pp. 10–15.

    CAS  Google Scholar 

  8. J.W. Martin and D.E. Talbot:Nucl. Technol., 1981, vol. 55, pp. 499–504.

    CAS  Google Scholar 

  9. K. Tanaka, Y. Nakai, and M. Yamashita:Int. J. Fract., 1981, vol. 17, pp. 519–33.

    CAS  Google Scholar 

  10. K. Tanaka and Y. Nakai: inFatigue Crack Growth Threshold Concepts, D.L. Davidson and S. Suresh, eds., TMS-AIME, Warrendale, PA, 1984, pp. 497–516.

    Google Scholar 

  11. R. Summitt: Final Report No. N00014-K-0419, Michigan State University, East Lansing, MI, March 1986.

    Google Scholar 

  12. T.W. Crooker and J.A. Hauser II: NRL Memorandum Report 5763, Naval Research Laboratory, Washington, DC, April 1986.

    Google Scholar 

  13. A. Turnbull and J.G.N. Thomas:J. Electrochem. Soc., 1982, vol. 129, pp. 1412–22.

    Article  CAS  Google Scholar 

  14. M.A. Daeubler, A.W. Thompson, and I.M. Bernstein:Metall. Trans. A, 1991, vol. 22A, pp. 513–19.

    CAS  Google Scholar 

  15. B.F. Brown: inStress Corrosion Cracking and Hydrogen Embrittlement of Iron Base Alloys, J. Hochmann, J. Slater, R.D. McCright, and R.W. Staehle, eds., NACE, Houston, 1976, pp. 747–50.

    Google Scholar 

  16. Corrosion Fatigue-Mechanics, Metallurgy, Electrochemistry and Engineering, STP 801, T.W. Crooker and B.N. Leis, eds., ASTM, Philadelphia, PA, 1983.

  17. Embrittlement by the Localized Crack Environment, R.P. Gangloff, ed., TMS-AIME, Warrendale, PA, 1984.

  18. Modeling Environmental Effects on Crack Growth Processes, R.H. Jones and W.W. Gerberich, eds., TMS-AIME, Warrendale, PA, 1986.

  19. Small Fatigue Cracks, R.O. Ritchie and J. Lankford, eds., TMS-AIME, Warrendale, PA, 1986.

  20. R.P. Wei and G.W. Simmons:Int. J. Fract., 1981, vol. 17, pp. 235–47.

    Article  CAS  Google Scholar 

  21. K. Landes, J. Congleton, and R.N. Parkins: inEmbrittlement by the Localized Crack Environment, R.P. Gangloff, ed., TMS-AIME, Warrendale, PA, 1984, pp. 59–74.

    Google Scholar 

  22. R.P. Gangloff:Metall. Trans. A, 1985, vol. 16A, pp. 953–69.

    CAS  Google Scholar 

  23. A. Turnbull and D.H. Ferriss: inModeling Environmental Effects on Crack Growth Processes, R.H. Jones and W.W. Gerberich, eds., TMS-AIME, Warrendale, PA, 1986, pp. 3–39.

    Google Scholar 

  24. R.H. Jones, M.J. Danielson, and C.A. Oster: inModeling Environmental Effects on Crack Growth Processes, R.H. Jones and W.W. Gerberich, eds., TMS-AIME, Warrendale, PA, 1986, pp. 41–54.

    Google Scholar 

  25. B.N. Leis: inModeling Environmental Effects on Crack Growth Processes, R.H. Jones and W.W. Gerberich, eds., TMS-AIME, Warrendale, PA, 1986, pp. 301–19.

    Google Scholar 

  26. R.A. Cottis: inSmall Fatigue Cracks, R.O. Ritchie and J. Lankford, eds., TMS-AIME, Warrendale, PA, 1986, pp. 265–68.

    Google Scholar 

  27. A. Turnbull and R.C. Newman: inSmall Fatigue Cracks, R.O. Ritchie and J. Lankford, eds., TMS-AIME, Warrendale, PA, 1986, pp. 269–88.

    Google Scholar 

  28. F.P. Ford and S.J. Hudak: inSmall Fatigue Cracks, R.O. Ritchie and J. Lankford, eds., TMS-AIME, Warrendale, PA, 1986, pp. 289–308.

    Google Scholar 

  29. M. Barbosa:Corrosion, 1987, vol. 43, pp. 309–18.

    CAS  Google Scholar 

  30. M.A. Daeubler, A.W. Thompson, and I.M. Bernstein:Metall. Trans. A, 1988, vol. 19A, pp. 301–08.

    CAS  Google Scholar 

  31. M. Kendig and F. Mansfield:Application of Electrochemical and Mechanical Impedance Techniques for Evaluation of Stress Corrosion Cracking and Corrosion Fatigue, Proc. Corrosion Research Symp., NACE, Houston, TX, 1986, in press.

    Google Scholar 

  32. H.H. Johnson and P.C. Paris:Eng. Fract. Mech., 1970, vol. 1, pp. 3–45.

    Article  Google Scholar 

  33. R.P. Wei:Eng. Fract. Mech., 1970, vol. 1, pp. 633–51.

    Article  CAS  Google Scholar 

  34. R.W. Staehle: inThe Theory of Stress Corrosion Cracking of Alloys, J.C. Scully, ed., NATO, Brussels, Belgium, 1971, pp. 223–86.

    Google Scholar 

  35. A. Boateng, J.A. Begley, and R.W. Staehle:Corrosion, 1980, vol. 36, pp. 633–38.

    CAS  Google Scholar 

  36. D. J. Duquette: inEnvironment-Sensitive Fracture of Engineering Materials, Z.A. Foroulis, ed., TMS-AIME, Warrendale, PA, 1979, pp. 521–37.

    Google Scholar 

  37. G.T. Burstein and P.I. Marshall:Corros. Sci., 1984, vol. 24, pp. 449–62.

    Article  CAS  Google Scholar 

  38. A. Turnbull and D.H. Ferriss:Corros. Sci., 1986, vol. 26, pp. 601–28.

    Article  CAS  Google Scholar 

  39. G.T. Gray, A.W. Thompson, and J.C. Williams:Metall. Trans. A, 1985, vol. 16A, pp. 753–60.

    CAS  Google Scholar 

  40. M.A. Daeubler, A.W. Thompson, and I.M. Bernstein:Metall. Trans. A, 1990, vol. 21A, pp. 925–33.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Formerly Postdoctoral Associate, Carnegie Mellon University

Formerly Associate Professor, Carnegie Mellon University

Formerly Professor, Carnegie Mellon University

Rights and permissions

Reprints and permissions

About this article

Cite this article

Daeubler, M.A., Warren, G.W., Bernstein, I.M. et al. Modeling of corrosion fatigue crack initiation under passive electrochemical conditions. Metall Trans A 22, 521–529 (1991). https://doi.org/10.1007/BF02656820

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02656820

Keywords

Navigation