Skip to main content
Log in

The combined effect of grain size and strain rate on the dislocation substructures and mechanical properties in pure aluminum

  • Published:
Metallurgical Transactions A Aims and scope Submit manuscript

Abstract

The effect of grain size on the development of dislocation substructures has been studied as a function of strain rate. Pure aluminum rods with grain diameters of 70, 278, and 400 μm were deformed in tension at room temperature to various percent strains at strain rates of 0.01, 0.25, 2.5, and 5/min. It has been confirmed that the smaller grain size results in higher flow stress in this strain-rate range. The cell size strengthening described by the modified Hall-Petch (MHP) equation is applicable to samples with 70 and 278 μm grain sizes at all four strain rates used in this study, while 400 μm grain sizes show deviation from this because of inhomogeneities developed in the microstructure. The influence of strain rate on the slope of the MHP plots, for a grain size of 70 μm, is such that at lower strain rates, the slope does not change much, but at higher strain rates, there is an increase in the slope value. At all strain rates, the values of slopes from the MHP plots of the smaller grains are higher than for the larger grains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. D.L. Holt:J. Appl. Phys., 1970, vol. 41, pp. 3197–201.

    Article  Google Scholar 

  2. D. Kuhlmann-Wilsdorf:Mater. Sci. Eng., 1989, vol. Al 13, pp. 1–41.

    Google Scholar 

  3. N. Hansen and D. Kuhlmann-Wilsdorf:Mater. Sci. Eng., 1986, vol. 81, pp. 141–61.

    Article  CAS  Google Scholar 

  4. N. Hansen:Mater. Sci. Tech., 1990, vol. 6, pp. 1039–47.

    CAS  Google Scholar 

  5. H. Mughrabi:Acta Metall., 1983, vol. 31, pp. 1367–79.

    Article  CAS  Google Scholar 

  6. J.H. Cairns, J. Clough, M. Dewey, and J. Nutting:J. Inst. Met., 1971, vol. 99, pp. 93–97.

    CAS  Google Scholar 

  7. A.S. Malin and M. Hatherly: tMet. Sci., 1979, pp. 463-72.

  8. D.J. Dingley and D. McLean:Acta Metall., 1967, vol. 15, pp. 885–901.

    Article  CAS  Google Scholar 

  9. K.R. Karson and J. Weertman:Trans. Met. Soc., 1968, vol. 242, pp. 1413–18.

    Google Scholar 

  10. T. Tabata, S. Yamanaka, and H. Fujita:Acta Metall., 1978, vol. 26, pp. 405–11.

    Article  CAS  Google Scholar 

  11. D. Knoesen and S. Kritzinger:S. Afr. J. Phys., 1981, vol. 5, pp. 19–22.

    Google Scholar 

  12. S.K. Varma and B.G. LeFevre:Metall. Trans. A, 1980, vol. 11A, pp. 935–42.

    CAS  Google Scholar 

  13. J.D. Embury, A.S. Keh, and R.M. Fisher:Trans. Met. Soc. AIME, 1966, vol. 236, pp. 1252–60.

    CAS  Google Scholar 

  14. W.G. Truckner and D.E. Mikkola:Metall. Trans. A, 1977, vol. 8A, pp. 45–49.

    CAS  Google Scholar 

  15. J.J. Gracio, J.V. Fernandez, and J.H. Schmitt:Mater. Sci. Eng., 1989, vol. Al 18, pp. 97–105.

    Google Scholar 

  16. W.H. Zimmer, S.S. Hecker, D.L. Rohr, and L.E. Murr:Met. Sci., 1983, vol. 17, pp. 198–206.

    Article  Google Scholar 

  17. P. Hassen:Phil. Mag., 1958, vol. 3, pp. 384–418.

    Google Scholar 

  18. A. Seegar, J. Diehl, S. Mader, and H. Rebstock:Phil. Mag., 1957, vol. 2, p. 323.

    Google Scholar 

  19. D. Kuhlmann-Wilsdorf:Metall. Trans., 1970, vol. 1, pp. 3173–79.

    Google Scholar 

  20. D. Knoesen and S. Kritzinger:Acta Metall., 1982, vol. 26, pp. 1219–22.

    Google Scholar 

  21. L.E. Murr and D. Kuhlmann-Wilsdorf:Acta Metall., 1978, vol. 26, pp. 847–57.

    Article  CAS  Google Scholar 

  22. D. Griffith and N. Riley:Acta Metall., 1966, vol. 14, pp. 755–73.

    Article  Google Scholar 

  23. M.R. Staker and D.L. Holt:Acta Metall., 1972, vol. 20, pp. 569–79.

    Article  CAS  Google Scholar 

  24. A.W. Thompson, M.I. Baskes, and W.F. Flanagan:Acta Metall., 1973, vol. 21, pp. 1017–28.

    Article  CAS  Google Scholar 

  25. M.F. Ashby:Phil. Mag., 1970, vol. 21, pp. 399–424.

    CAS  Google Scholar 

  26. P.J. Jackson:Scripta Metall., 1983, vol. 17, pp. 199–202.

    Article  CAS  Google Scholar 

  27. E.E. Zasimchuk and L.I. Markashova:Mater. Sci. Eng., 1990, vol. A127, pp. 33–39.

    CAS  Google Scholar 

  28. B. Bay, N. Hansen, and D. Kuhlmann-Wilsdorf:Mater. Sci. Eng., 1989, vol. A113, pp. 385–97.

    CAS  Google Scholar 

  29. N.K. Park and B.A. Parker:Mater. Sci. Eng., 1989, vol. Al 13, pp. 431–39.

    Google Scholar 

  30. V.S. Ananthan, T. Leffers, and N. Hansen:Scripta Metall., 1991, vol. 25, pp. 137–42.

    Article  CAS  Google Scholar 

  31. P.J. Jackson and M. Siedersieben:Scripta Metall., 1984, vol. 18, pp. 749–57.

    Article  CAS  Google Scholar 

  32. D.A. Hughes and W.D. Nix:Mater. Sci. Eng., 1989, vol. A122, pp. 153–72.

    CAS  Google Scholar 

  33. A.W. Thompson:Acta Metall., 1977, vol. 25, pp. 83–86.

    Article  CAS  Google Scholar 

  34. D.J. Jensen and N. Hansen:Acta Metall., 1990, vol. 38, pp. 1369–80.

    Article  CAS  Google Scholar 

  35. Y.Y. Chao and S.K. Varma:Mater. Sci. Eng., 1991, vol. A131, pp. L1-L3.

    CAS  Google Scholar 

  36. F. Chevel and L. Priester:Scripta Metall., 1989, vol. 23, pp. 1871–76.

    Article  Google Scholar 

  37. A. Gurevitch, L.E. Murr, S.K. Varma, S. Thiagarajan, and W.W. Fisher: inShock-Wave and High-Strain-Rate Phenomena in Materials, M.A. Meyers, L.E. Murr, and K.P. Staudhammer, eds., Marcel Dekker, Inc., New York, NY, 1992, pp. 521–28.

    Google Scholar 

  38. E.O. Hall:Proc. R. Soc. London, 1951, vol. B64, pp. 747.

    CAS  Google Scholar 

  39. N.J. Petch:J. Iron Steel Inst., 1953, vol. 174, pp. 25.

    CAS  Google Scholar 

  40. R.J. Armstrong, I. Codd, R.M. Douthwaite, and N.J. Petch:Phil. Mag., 1962, vol. 7, pp. 45–48.

    CAS  Google Scholar 

  41. M. Dollar and S. Gorczyca:Scripta Metall., 1982, vol. 16, pp. 901–906.

    Article  CAS  Google Scholar 

  42. N.J. Petch:Phil. Mag., 1956, vol. 1, pp. 1956.

    Google Scholar 

  43. H. Conrad:Trans. Jpn. Inst. Met., 1968, vol. 9, pp. 186.

    Google Scholar 

  44. J.C.M. Li:Trans. AIME, 1963, vol. 227, pp. 239–47.

    CAS  Google Scholar 

  45. W.M. Baldwin:Acta Metall., 1958, vol. 6, pp. 139–41.

    Article  Google Scholar 

  46. E.M. Schulson, T.P. Weihs, I. Baker, H.J. Frost, and J.A. Horton:Acta Metall., 1986, vol. 34, pp. 1395–99.

    Article  CAS  Google Scholar 

  47. H. Fujita and T. Tabata:Acta Metall., 1973, vol. 21, pp. 355–65.

    Article  CAS  Google Scholar 

  48. B.P. Kashyap and K. Tangri:Scripta Metall., 1990, vol. 24, pp. 1777–82.

    Article  CAS  Google Scholar 

  49. CM. Young and O.D. Sherby:J. Iron Steel Inst., 1973, vol. 211, pp. 640–47.

    CAS  Google Scholar 

  50. H. Conrad and G. Schoeck:Acta Metall., 1960, vol. 8, pp. 791–96.

    Article  CAS  Google Scholar 

  51. D. Kalish, B.G. LeFevre, and S.K. Varma:Metall. Trans. A, 1977, vol. 8A, pp. 204–206.

    CAS  Google Scholar 

  52. D. Kuhlmann-Wilsdorf:Mater. Sci. Eng., 1987, vol. 86, pp. 53–66.

    Article  CAS  Google Scholar 

  53. D. Sil, J.G. Rao, and S.K. Varma:Metall. Trans. A, 1992, vol. 23A, pp. 3166–69.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sil, D., Varma, S.K. The combined effect of grain size and strain rate on the dislocation substructures and mechanical properties in pure aluminum. Metall Trans A 24, 1153–1161 (1993). https://doi.org/10.1007/BF02657246

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02657246

Keywords

Navigation