Skip to main content
Log in

Influence of texture on fatigue properties of Ti-6Al-4V

  • Published:
Metallurgical Transactions A Aims and scope Submit manuscript

Abstract

Tensile properties, high cycle fatigue strength, and fatigue crack propagation behavior were evaluated on highly textured Ti-6Al-4V material to investigate the influence of a preferred crystallographic orientation on mechanical properties. Thermomechanical treatments were used to develop three different textures: a basal, basal/transverse, and transverse type, all of which exhibited the same homogeneously equiaxed microstructure. The Young’s modulus was found to vary between 107 and 126 GNm-2, and yield strength changed from 1055 to 1170 MNm-2. Ductility was only slightly affected by texture. High cycle fatigue and fatigue crack growth measurements were performed in vacuum, laboratory air, and a 3.5 pct NaCl solution. It is shown that laboratory air can be regarded as a quite corrosive environment. In vacuum the highest fatigue strength values were measured whenever loads were perpendicular to basal planes. However, these conditions had the highest susceptibilities to air and 3.5 pct NaCl solution environments. Nearly no influence of texture on fatigue crack propagation was found in vacuum, but in a corrosive environment crack growth parallel to (0002)-planes was much faster than perpendicular to these planes. To explain the corrosive effect on the fatigue properties of the textured material hydrogen is thought to play a key role.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. J. Lucas and P. P. Konieczny:Metall. Trans., 1971, vol. 2, p. 911.

    Article  Google Scholar 

  2. A. W. Bowen and C. A. Stubbington:Titanium Science and Technology, Plenum Press, New York, NY, 1973, vol. 3, p. 2097.

    Google Scholar 

  3. J. J. Lucas:Titanium Science and Technology, Plenum Press, New York, NY, 1973, vol. 3, p. 2081.

    Google Scholar 

  4. C. A. Stubbington and A. W. Bowen:Journal of Materials Science, 1974, vol. 9, p. 941.

    Article  Google Scholar 

  5. M. Peters, A. Gysler, and G. Lütjering:Titanium ’80, Science and Technology, TMS-AIME, Warrendale, PA, 1980, vol. 3, p. 1777.

    Google Scholar 

  6. H. Margolin, J. C. Williams, J. C. Chesnutt, and G. Lütjering:Titanium ’80. Science and Technology, TMS-AIME, Warrendale, PA, 1980, vol. 1, p. 169.

    Google Scholar 

  7. N. E. Paton, J. C. Williams, J. C. Chesnutt, and A. W. Thompson:AGARD Conference Proceedings, 1975, vol. 185, p. 4–1.

    Google Scholar 

  8. J. C. Chesnutt, C. G. Rhodes, and J. C. Williams: ASTM-STP600, ASTM, Philadelphia, PA, 1976, p. 99.

  9. G. R. Yoder, L. A. Cooley, and T. W. Crooker:Engg. Fracture Mechanics, 1979, vol. 11, p. 805.

    Article  Google Scholar 

  10. A. W. Bowen:Scripta Met., 1977, vol. 11, p. 17.

    Article  Google Scholar 

  11. A. W. Bowen:Titanium Science and Technology, Plenum Press, New York, NY, 1973, vol. 2, p. 1271.

    Google Scholar 

  12. F. Larson and A. Zarkades: MCIC-74-20, Battelle, Columbus, OH, 1974.

  13. A. W. Sommer and M. Creager: AFML-TR-76-222, 1977.

  14. R. J. H. Wanhill:Metall. Trans. A, 1976, vol. 7A, p. 1365.

    Article  Google Scholar 

  15. M. Peters and G. Lütjering:Titanium ’80, Science and Technology, TMS-AIME, Warrendale, PA, 1980, vol. 2, p. 925.

    Google Scholar 

  16. M. H. Müller and H. W. Knott:Rev. Sci. Instr., 1954, vol. 25, p. 1115.

    Article  Google Scholar 

  17. G. Lütjering, M. Peters, and R. I. Jaffee:Mechanical Properties of a Titanium Blading Alloy, EPRI CS-2933, Electric Power Research Institute, Palo Alto, CA, 1983.

    Google Scholar 

  18. M. Peters, G. Lütjering, and G. Ziegler:Zeitschrift f. Metallkunde, 1983, vol. 74, p. 274.

    Google Scholar 

  19. A. Gysler and G. Lütjering:Metall. Trans. A, 1982, vol. 13A, p. 1435.

    Article  Google Scholar 

  20. G. Welsch, G. Lütjering, K. Gazioglu, and W. Bunk:Metall. Trans. A, 1977, vol. 8A, p. 169.

    Article  Google Scholar 

  21. A. W. Bowen:Mat. Sci. Engg., 1977, vol. 29, p. 19.

    Article  Google Scholar 

  22. A. W. Bowen:Mat. Sci. Engg., 1979, vol. 40, p. 31.

    Article  Google Scholar 

  23. P. G. Patridge:Met. Rev., 1967, vol. 12, p. 169.

    Article  Google Scholar 

  24. E. Schmid:Z. Elektrochem., 1931, vol. 37, p. 447.

    Google Scholar 

  25. N. E. Paton, R.G. Baggerly, and J. C. Williams: Final Report on AFOSR, Contr. No. F44620-72-C-0043, 1976.

  26. J. C. Grosskreutz:Metall. Trans., 1972, vol. 3, p. 1255.

    Article  Google Scholar 

  27. D. Hoeppner:Forging and Properties of Aerospace Materials, The Metals Society, London, 1978, p. 103.

    Google Scholar 

  28. G. Lütjering and A. Gysler:Aluminum Transformation Technology and Applications, ASM, Metals Park, OH, 1980, p. 171.

    Google Scholar 

  29. J. C. Williams and G. Lütjering:Titanium ’80, Science and Technology, TMS-AIME, Warrendale, PA, 1980, vol. 1, p. 671.

    Google Scholar 

  30. M. A. Däubler and G. Lütjering:Proc. 7th Int. Light Metals Congress, Leoben/Vienna, 1981, p. 98.

  31. I. M. Bernstein and A. W. Thompson:Alloy and Microstructural Design, Academic Press, New York, NY, 1976, p. 303.

    Book  Google Scholar 

  32. D. A. Meyn and G. Sandoz:Trans. TMS-AIME, 1969, vol. 245, p. 1253.

    Google Scholar 

  33. D. A. Meyn:Metall. Trans., 1974, vol. 5, p. 2405.

    Article  Google Scholar 

  34. R. R. Boyer and W. F. Spurr:Metall. Trans. A, 1978, vol. 9A, p. 23.

    Article  Google Scholar 

  35. S. M. L. Sastry, R. J. Lederich, and B. B. Rath:Metall. Trans. A, 1981, vol. 12A, p. 83.

    Article  Google Scholar 

  36. J. C. Laziou:J. Less-Common Met., 1976, vol. 46, p. 251.

    Article  Google Scholar 

  37. N. E. Paton and R. A. Spurling:Metall. Trans. A, 1976, vol. 7A, p. 1769.

    Article  Google Scholar 

  38. I. W. Hall:Metall. Trans. A, 1978, vol. 9A, p. 815.

    Article  Google Scholar 

  39. A. W. Thompson and I. M. Bernstein:Mechanisms of Environment Sensitive Cracking of Materials, The Metals Society, London, 1977, p. 412.

    Google Scholar 

  40. D. N. Williams:Mat. Sci. Engg., 1976, vol. 24, p. 53.

    Article  Google Scholar 

  41. H. G. Nelson, D. P. Williams, and J. E. Stein:Metall. Trans., 1972, vol. 3, p. 469.

    Google Scholar 

  42. J. Lindigkeit, G. Terlinde, A. Gysler, and G. Liitjering:Acta Metall., 1979, vol. 27, p. 1717.

    Article  Google Scholar 

  43. J. K. Tien, A.W. Thompson, I. M. Bernstein, and R. J. Richards:Metall. Trans. A, 1976, vol. 7A, p. 821.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Peters, M., Gysler, A. & LÜtjering, G. Influence of texture on fatigue properties of Ti-6Al-4V. Metall Trans A 15, 1597–1605 (1984). https://doi.org/10.1007/BF02657799

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02657799

Keywords

Navigation