Skip to main content
Log in

Diffusion in mercury cadmium telluride—an update

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

The various diffusion coefficients (self-diffusivity, chemical self-diffusivity compositional diffusivity, impurity diffusivity) are defined. The conditions required for the observation of a Kirkendall effect are described. There is good agreement in the results for Hg and for Cd self-diffusion. The evidence suggests that the self-diffusivity is largely independent of PHg above ~300°C but shows an increase as Hg saturation is approached (for both Hg and Cd). Good agreement is also found in the Arrhenius parameters describing the movement of the p to n conversion boundary. Modeling of this diffusion boundary does, however, raise problems which are discussed. The situation in compositional interdiffusion is more complex: above ~400°C, reasonable agreement exists between various workers for large xHg but not for small values; below 400°C, substantial disagreement is evident. In impurity diffusion exhibits both erfc and non-erfc profiles for reasons which are unclear. Good agreement is found between In diffusivity measurements at high In concentrations: at low concentrations, the diffusivity decreases dramatically. As diffusion yields erfc profiles with good agreement again being found: a notable feature is the PHg dependence of the As diffusivity. Where appropriate, diffusion models are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. M. Brown and A.F.W. Willoughby,J. Cryst. Growth 59, 27 (1982).

    Article  CAS  Google Scholar 

  2. D. Shaw,J. Cryst. Growth 86, 778 (1988).

    Article  CAS  Google Scholar 

  3. D.A. Stevenson and M.F.S. Tang,J. Vac. Sci. Technol. B 9, 1615 (1991).

    Article  CAS  Google Scholar 

  4. D. Shaw,Atomic Diffusion in Semiconductors ed. D. Shaw, (London: Plenum Press, 1973), Ch. 1.

    Google Scholar 

  5. R.L. Guldi, J.N. Walpole and R.H. Rediker,J Appl. Phys. 44, 4896 (1971).

    Article  Google Scholar 

  6. S.S. Chern and F.A. Kroger,J. Sol. State Chem. 14, 299 (1975).

    Article  CAS  Google Scholar 

  7. M. Wienecke, M. Schenk and H. Berger,Semicond. Sci. Technol. 8, 299(1993).

    Article  CAS  Google Scholar 

  8. B. Tuck,Introduction to Diffusion in Semiconductors, (Stevenage: Peter Peregrinus, 1974), p. 116.

    Google Scholar 

  9. M.F.S. Tang and D.A. Stevenson,J. Phys. Chem. Solids 51, 563 (1990).

    Article  CAS  Google Scholar 

  10. F.J.A. den Broeder,Scripta Metall. 3, 321 (1969).

    Article  Google Scholar 

  11. V. Leute and W. Stratmann,Zeit. Physik. Chemie. 90, 172 (1974).

    CAS  Google Scholar 

  12. V.I. Ivanov-Omskii, K.E. Mironov and V.K. Ogorodnikov,Phys. Stat. Solididya (60), 37 (1980).

    Google Scholar 

  13. H.D. Palfrey,J. Cryst. Growth 94, 778 (1989).

    Article  CAS  Google Scholar 

  14. D. Shaw,Semicond. Sci. Technol. 7, 1230 (1992).

    Article  CAS  Google Scholar 

  15. N.A. Archer, H.D. Palfrey and A.F.W. Willoughby,J. Cryst. Growth 117, 177(1992).

    Article  CAS  Google Scholar 

  16. A.D. LeClaire and A. Rabinovitch,J. Phys. C: Solid State Phys. 14 3863 (1981); 15, 3455 (1982); 16, 2087 (1983).

    Article  CAS  Google Scholar 

  17. A.D.LeClaire,Brit.J. Appl. Phys. 14, 351 (1963).

    Article  Google Scholar 

  18. G.E. Murch and S. J. Rothman,Diffusion and Defect Data 42, 17 (1985).

    CAS  Google Scholar 

  19. J.S. Chen, PhD Thesis (University of Southern California, 1985).

  20. M.F.S. Tang and D.A. Stevenson,J. Vac. Sci. Technol. A7, 544 (1989).

    Google Scholar 

  21. D. Shaw,Phil. Mag. A 53, 727 (1986).

    CAS  Google Scholar 

  22. N.A. Archer, H.D. Palfrey and A.F.W. WilloughbyJ. Electron. Mater. 22, 967 (1993).

    CAS  Google Scholar 

  23. H.F. Schaake, J.H. Tregilgas, J.D. Beck, M.A. Kinch and B.E. Gnade,J. Vac. Sci. Technol. A 3, 143 (1985).

    Article  CAS  Google Scholar 

  24. N.V. Baranova, A.S. Tomson, N.P. Artamonov and A.V. Vanyukov,Inorgan. Mater. (USA) 12, 1751 (1976).

    Google Scholar 

  25. C.L. Jones, M.J.T. Quelch, P. Capper and J.J. Gosney,J. Appl. Phys. 53, 9080 (1982).

    Article  CAS  Google Scholar 

  26. V.V. Bogoboyaschii, A.I. Elizarov, V.I. Ivanov-Omskii, V.R. Petrenko and V.A. Petoyakov,Sov. Phys. Semicond. 19, 505 (1985).

    Google Scholar 

  27. V.V. Bogoboyaschii, A.I. Elizarov, V.l. Ivanov-Omskii and V.A. Petoyakov,Sov. Phys. Semicond. 21, 888 (1987).

    Google Scholar 

  28. P. Koppel and K. Owens,J. Appl. Phys. 67, 6886 (1990).

    Article  CAS  Google Scholar 

  29. D.T. Dutton, E. O’Keefe, P. Capper, C.L. Jones, S. Mugford and C. Ard,Semicond. Sci. Technol. 8, S266 (1993).

    Article  CAS  Google Scholar 

  30. T.C. Harman,J. Vac. Sci. Technol. A 5, 3055 (1987).

    Article  CAS  Google Scholar 

  31. L. Svob, Y. Marfaing, R. Triboulet, F. Bailly and G. Cohen-Solal,J. Appl. Phys. 46, 4251 (1975).

    Article  CAS  Google Scholar 

  32. J.G. Fleming and D.A. Stevenson,Phys. Stat. Solidi (a), 105, 77(1987).

    Article  Google Scholar 

  33. V.I. Ivanov-Omskii, K.E. Mironov and V.K. Ogorodnikov,Phys. Stat. Solidi(a), 58, 543 (1980).

    Article  CAS  Google Scholar 

  34. H. Takigawa, M. Yoshikawa, M. Ito and K. Maruyama,Mater. Res. Soc. Symp. Proc. 37, 97 (1985).

    CAS  Google Scholar 

  35. K..Zanio and T. Massopust,J..Electron.Mater. 15,103(1986).

    CAS  Google Scholar 

  36. V. Leute, H.M. Schmidtke, W. Stratmann and W. Winking,Phys. Stat. Solidi (a), 67, 183 (1981).

    Article  CAS  Google Scholar 

  37. M.F.S. Tang and D.A. Stevenson,Appl. Phys. Lett. 50, 1272 (1987).

    Article  CAS  Google Scholar 

  38. A. Tardot,A. Hamoudi,N. Magnea,P. Gentile and J.L. Pautrat,Semicond. Sci. Technol. 8, S276 (1993).

    Article  CAS  Google Scholar 

  39. Y. Kim, A. Ourmazd, M. Bode and R.D. Feldman,Phys. Rev. Lett. 63, 636(1989).

    Article  CAS  Google Scholar 

  40. Y. Kim, A. Ourmazd and R.D. Feldman,J. Vac. Sci. Technol. A 8, 1116 (1990).

    Article  CAS  Google Scholar 

  41. B.W. Ludington,Mater. Res. Soc. Symp. Proc. 90,437 (1987).

    CAS  Google Scholar 

  42. K. Takita, K. Murakami, H. Otake, K. Masuda, S. Seki and H. Kudo,Appl. Phys. Lett. 44, 996 (1984); 47, 1119 (1985).

    Article  CAS  Google Scholar 

  43. E.D. Jones, V. Thambipillai and J.B. Mullin,J. Cryst. Growth 118, 1 (1992).

    Article  CAS  Google Scholar 

  44. J.H.C. Hogg, A. Bairstow, G.W. Matthews, D. Shaw and J.D. Stedman,Mater. Sci. Engineering B16, 195 (1993).

    Article  CAS  Google Scholar 

  45. V.V. Belov, F.A. Zaitov and G.E. Popovyan,Sov. Phys. Solid State 11, 162(1970).

    Google Scholar 

  46. A.V. Gorshkov, F.A. Zaitov, G.M. Shalyapina and S.B. Shangin,Sov. Phys. Solid State 25, 1532 (1983).

    Google Scholar 

  47. D. Shaw,Phys. Stat. Solidi (a), 89, 173 (1985).

    Article  CAS  Google Scholar 

  48. H.R. Vydyanath, C.H. Hiner, S.R. Hampton and T.R. Krueger (unpublished work 1988).

  49. T.H. Myers, K.A. Harris, R.W. Yanka, L.M. Mohnkern, R.J. Williams and G.K. Dudoff,J. Vac. Sci. Technol. B10, 1438 (1992).

    Google Scholar 

  50. H.D. Palfrey and A.F.W. Willoughby (private communication).

  51. G. Weck and K. Wandel, European Workshop on II-VI Semiconductors, Aachen, 2–4 November 1992.

  52. G.L. Destefanis,J. Cryst. Growth 86, 700 (1988).

    Article  CAS  Google Scholar 

  53. L.O. Bubulac,J. Cryst. Growth 86, 723 (1988).

    Article  CAS  Google Scholar 

  54. J. Wong and R.J. Roedel,J. Vac. Sci. Technol. A9, 2258 (1991).

    Google Scholar 

  55. G.M. Khattak, J.M. Majid, C.G. Scott and D. Shaw,Solid State Commun. 84, 1073 (1992).

    Article  CAS  Google Scholar 

  56. J.E. Falconer, H.D. Palfrey and G.W. Blackmore,J. Cryst. Growth 100, 275 (1990).

    Article  CAS  Google Scholar 

  57. D. Chandra, M.W. Goodwin and M.C. Chen and J.A. Dodge,J. Electron. Mater. 22, 1033 (1993).

    CAS  Google Scholar 

  58. L.O. Bubulac, D.D. Edwall and C.R. Viswanathan,J. Vac. Sci. Technol. B 9, 1695 (1991).

    Article  CAS  Google Scholar 

  59. L.O. Bubulac and C.R. Viswanathan,J. Cryst. Growth 123, 555 (1992).

    Article  CAS  Google Scholar 

  60. H.R. Vydyanath,J. Vac. Sci. Technol. B 9, 1716 (1991).

    Article  CAS  Google Scholar 

  61. D. Shaw,Semicond. Sci. Technol. 9, 1729 (1994).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shaw, D. Diffusion in mercury cadmium telluride—an update. J. Electron. Mater. 24, 587–598 (1995). https://doi.org/10.1007/BF02657967

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02657967

Key words:

Navigation