Skip to main content
Log in

The bainite transformation in a silicon steel

Metallurgical Transactions A Aims and scope Submit manuscript

Abstract

An experimental silicon steel has been used in a detailed kinetic and structural study of the bainite transformation in an attempt to resolve some of the controversies concerning the reaction mechanism. Distinct reaction ‘C’ curves and transformation mechanisms were observed for the upper and lower bainite reactions. The observed set of three minima in transformation kinetics were found to be incompatible with the solute drag explanation of the kinetic Bs temperature. Transmission electron microscopy indicated the growth of both upper and lower bainite by the propagation of displacive subunits, with adjacent nucleation in the latter case. Definite evidence for carbon supersaturation was obtained for the lower bainitic ferrite. The results are best explained in terms of a shear mechanism for the ferritic component of bainite rather than a ledge mechanism (as is observed in Widmanstatten ferrite growth). Carbide precipitation events were also characterized and the evidence suggested that precipitation resulted from the aging of a supersaturated matrix in lower bainite. The evidence also suggests that carbide precipitation events are of secondary importance to the essence of bainite formation. It was further proven that the concept of a metastable equilibrium1 controlling the transition from upper to lower bainite was not applicable to the present steel and indeed, if any metastable equilibrium does exist in any other steel, it does not constitute a general phenomenon and hence is not essential to the bainite transformation mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. R. F. Hehemann, K. R. Kinsman, and H. I. Aaronson:Met. Trans., 1970, vol. 3, pp. 1077–93.

    Article  Google Scholar 

  2. H. I. Aaronson:The Mechanism of Phase Transformations in Crystalline Solids, Institute of Metals Monograph 33, 1968, p. 270.

  3. 1st Progress Report of Sub-Committee XI, ASTM Committee E-4; Proc. ASTM, 1950, vol. 50, p. 444.

  4. 2nd Progress Report of Sub-Committee XI, ASTM Committee E-4;Ibid., 1952, vol. 52, p. 543.

  5. 4th Progress Report of Sub-Committee XI, ASTM Committee E-4;Ibid., 1954, vol. 54, p. 568.

  6. L. Habraken:Proc. 4th Int. Conf. on Electron Microscopy, 1958, p. 621, Springer-Verlag, Berlin.

    Google Scholar 

  7. R. M. Fisher:Ibid., 1958, Springer-Verlag, Berlin, p. 579.

    Google Scholar 

  8. F. B. Pickering:Ibid., 1958, Springer-Verlag, Berlin, p. 626.

    Google Scholar 

  9. K. Shimizu and Z. Nishiyama:Mem. Inst. Sci. Ind. Res. Osaka Univ., 1963, vol. 20, p. 43.

    Google Scholar 

  10. J. M. Oblak and R. F. Hehemann:Transformations and Hardenability in Steels, p. 15, Climax Molybdenum Company, Ann Arbor, MI, 1967.

    Google Scholar 

  11. B. A. Leontyev and G. V. Kovalevskaya:Phys. Met. Metallogr., 1974, vol. 38, p. 139.

    Google Scholar 

  12. N. A. Snurenskaya, L. I. Kogan, and R. I. Entin:Phys. Met. Metallogr., 1976, vol. 41, pp. 1019–28.

    Google Scholar 

  13. Der-Hung Hang and G. Thomas:Met. Trans. A, 1977, vol. 8A, p. 1661.

    Article  Google Scholar 

  14. N. F. Kennon:J. Aust. Inst. Metals, 1974, vol. 19, pp. 3–18.

    CAS  Google Scholar 

  15. K. R. Kinsman and H. I. Aaronson:Transformations and Hardenability in Steels, p. 39, Climax Molybdenum Company, Ann Arbor, MI, 1967.

    Google Scholar 

  16. R. F. Hehemann:Phase Transformations, p. 397, ASM, Metals Park, Ohio, 1970.

    Google Scholar 

  17. R. Le Houiller, G. Begin, and A. Dube:Met. Trans., 1971, vol. 2, p. 2645.

    Article  Google Scholar 

  18. N. F. Kennon:Met. Trans. A, 1978, vol. 9A, pp. 57–66.

    Article  CAS  Google Scholar 

  19. G. R. Purdy:Acta Met., 1978, vol. 26, pp. 477–86.

    Article  CAS  Google Scholar 

  20. G. R. Purdy:Acta Met., 1978, vol. 26, pp. 487–98.

    Article  CAS  Google Scholar 

  21. B. Uhrenius:Scand. J. Met., 1977, vol. 6, pp. 83–89.

    CAS  Google Scholar 

  22. W. S. Owen:Trans. ASM, 1954, vol. 46, pp. 812–29.

    Google Scholar 

  23. J. Gordine and I. Codd:J. Iron Steel Inst., 1969, vol. 207.1, pp. 461–67.

    Google Scholar 

  24. R. M. Hobbs, G. W. Lorimer, and N. Ridley:J. Iron Steel Inst., 1972, vol. 210.2, pp. 757–64.

    Google Scholar 

  25. M. J. Dickson:J. Appl. Cryst., 1969, vol. 2, p. 176.

    Article  CAS  Google Scholar 

  26. B. D. Cullity:Elements of X-ray Diffraction, First edition, p. 334, Addison- Wesley Publishing Co., Reading, Massachusetts, U.S.A., 1956.

    Google Scholar 

  27. G. B. Olsen and M. Cohen:Met. Trans. A, 1976, vol. 7A, p. 1797.

    Google Scholar 

  28. H. K. D. H. Bhadeshia and D. V. Edmonds: Report No. 4, 1977, University of Cambridge, Cambridge, Great Britain.

    Google Scholar 

  29. H. K. D. H. Bhadeshia and D. V. Edmonds: Unpublished Research, 1977, University of Cambridge, Cambridge, Great Britain.

    Google Scholar 

  30. H. K. D. H. Bhadeshia and D. V. Edmonds:Met. Sci. J., (in press).

  31. B. Jacobson and A. Westgren:Zietschrift fur Physikalische Chemie, Baden- stein Anniversary volume, 1931, p. 177.

  32. N. C. Law: Ph.D. Thesis, University of Cambridge, 1977.

  33. H. I. Aaronson, M. R. Plichta, G. W. Franti, and K. C. Russell:Met. Trans. A, 1978, vol. 9A, p. 368.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bhadeshia, H.K.D.H., Edmonds, D.V. The bainite transformation in a silicon steel. Metall Trans A 10, 895–907 (1979). https://doi.org/10.1007/BF02658309

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02658309

Keywords

Navigation