Skip to main content
Log in

The influence of austenite stability on the hydrogen embrittlement and stress- corrosion cracking of stainless steel

  • Published:
Metallurgical Transactions A Aims and scope Submit manuscript

Abstract

A study has been made of the HE and SCC of a type 304 and a type 310 austenitic stainless steel, and the results correlated with the presence or absence of α′ martensite, determined by means of a ferrite detector. Hydrogen induced slow crack growth (SCG) was observed at room temperature when type 304 was stressed i) in 1 psig (∼105 N/m2) gaseous hydrogen, ii) after high temperature charging, and iii) while undergoing cathodic charging. The fracture surfaces corresponding to SCG were primarily transgranular and cleavage-like, and were found to be associated with α′. Conditions i) to iii) did not produce SCG in the type 310 steel, in which α′ martensite was not detected, nor did SCG occur when type 304 was stressed in gaseous hydrogen above the MD temperature (∼110°C). These observations indicated that the formation of the martensitic phase was a prerequisite for SCG under these test conditions. Stressing of type 310 while it was undergoing cathodic charging at room temperature was found to produce shallow, nonpropagating cracks, confirming earlier reports that austenite can be embrittled by hydrogen in the absence of α′. SCC occurred in both alloys in boiling aqueous MgCl2 (154°C) with no evidence for α′ formation. The results are discussed in terms of the mechanisms of HE and SCC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. J. D. Hobson and J. Hewitt:J. Iron Steel Inst., 1953, vol. 173, p. 131.

    Google Scholar 

  2. P. Blanchard and A. R. Troiano:Mem. Sci. Rev. Met., 1960, vol. 57, p. 409.

    CAS  Google Scholar 

  3. Ye. P. Nechai and K. V. Popov:Fiz. Met. Metattoved., 1962, vol. 14, p. 271.

    CAS  Google Scholar 

  4. M. B. Whiteman and A. R. Troiano:Corrosion, 1965, vol. 21, p. 53.

    CAS  Google Scholar 

  5. R. Lagneborg:J. Iron Steel Inst., 1969, vol. 207, p. 363.

    CAS  Google Scholar 

  6. M. L. Holzworth:Corrosion, 1969, vol. 25, p. 107.

    CAS  Google Scholar 

  7. L. K. Zamiryakin:Sov. Mater. Sci., 1971, vol. 7, p. 9.

    Article  Google Scholar 

  8. A. W. Thompson:Mater. Sci. Eng., 1974, vol. 14, p. 253.

    Article  CAS  Google Scholar 

  9. M. L. Mehta and J. Burke:Corrosion, 1975, vol. 31, p. 108.

    CAS  Google Scholar 

  10. R. M. Vennett and G. S. Ansell:Trans. ASM, 1967, vol. 60, p. 242.

    CAS  Google Scholar 

  11. R. B. Benson, R. K. Dann, and L. W. Roberts:Trans. TMS-AIME, 1968, vol. 242, p. 2199.

    CAS  Google Scholar 

  12. R. M. Vennett and G. S. Ansell:Trans. ASM, 1969, vol. 62, p. 1007.

    CAS  Google Scholar 

  13. R. J. Walter, R. P. Jewett, and W. T. Chandler:Mater. Sci. Eng., 1969, vol. 5, p. 98.

    Google Scholar 

  14. M. R. Louthan, G. R. Caskey, J. A. Donovan, and D. E. Rawl:Mater. Sci. Eng., 1972, vol. 10, p. 357.

    Article  CAS  Google Scholar 

  15. A. W. Thompson:Hydrogen in Metals, p. 91, ASM, Cleveland, OH, 1974.

    Google Scholar 

  16. D. A. Vaughn, D. I. Phalen, C. L. Peterson, and W. K. Boyd:Corrosion, 1963, vol. 19, p. 315t.

    Google Scholar 

  17. D. L. Douglass, G. Thomas, and W. R. Roser:Corrosion, 1964, vol. 20, p. 15t.

    Google Scholar 

  18. R. J. Greeley, V. J. Russo, R. K. Saxer, and J. R. Myers:Corrosion, 1965, vol. 21, p. 327.

    CAS  Google Scholar 

  19. M. L. Holzworth and M. R. Louthan:Corrosion, 1968, vol. 24, p. 110.

    CAS  Google Scholar 

  20. M. R. Louthan:Hydrogen in Metals, p. 53, ASM, Cleveland, OH, 1974.

    Google Scholar 

  21. D. Eliezer, D. G. Chakrapani, C. J. Altstetter, and E. N. Pugh:Proc. Second Int. Cong, on Hydrogen in Metals, p. 3F5, Pergamon, New York, 1977.

    Google Scholar 

  22. C. L. Briant:Met. Trans. A, 1978, vol. 9A, p. 731.

    CAS  Google Scholar 

  23. N. A. Nielsen:Stress Corrosion Cracking and Hydrogen Embrittlement of Iron-Base Alloys, p. 1108, NACE, Houston, TX, 1977.

    Google Scholar 

  24. C. Edeleanu:Stress-Corrosion Cracking and Embrittlement, p. 126, J. Wiley, New York, 1956.

  25. S. S. Birley and D. Tromans:Corrosion, 1971, vol. 27, p. 63.

    CAS  Google Scholar 

  26. R. W. Staehle:The Theory of Stress-Corrosion Cracking in Alloys, p. 223, NATO, Brussels, 1971.

    Google Scholar 

  27. R. J. Asaro, A. J. West, and W. A. Tiller:Stress-Corrosion Cracking and Hydrogen Embrittlement of Iron-Base Alloys, p. 1115, NACE, Houston, TX, 1977.

    Google Scholar 

  28. A. J. Bursle and E. N. Pugh:Proceedings of Symposium on Environment Sensitive Fracture of Engineering Materials, TMS-AIME, in press.

  29. Ye. P. Nechai and K. V. Popov:Fiz. Met. Metalloved., 1961, vol. 11, p. 224.

    CAS  Google Scholar 

  30. K. W. Lange and H. J. Konig:Proc. Second Int. Conf. on Hydrogen in Metals, p. 1A5, Pergamon, New York, 1977.

    Google Scholar 

  31. Y. Sakamoto and U. Hanada:Proc. Second Int. Conf. on Hydrogen in Metals, Pergamon, New York, 1977. p. 1A7.

    Google Scholar 

  32. H. K. Birnbaum and C. A. Wert:Ber. Bunsenges. Ges., 1972, vol. 76, p. 806.

    CAS  Google Scholar 

  33. J. K. Tien, A. W. Thompson, I. M. Bernstein, and R. J. Richards:Met. Trans. A, 1976, vol. 7A, p. 821.

    Article  CAS  Google Scholar 

  34. J. Kolts:Stress Corrosion-New Approaches, p. 366, ASTM, Philadelphia, STP610, 1976.

    Google Scholar 

  35. A. W. Thompson:Effect of Hydrogen on Behavior of Materials, p. 467, TMS-AIME, New York, 1976.

    Google Scholar 

  36. P. Maulik and J. Burke:Scr. Met., 1975, vol. 9, p. 17.

    Article  CAS  Google Scholar 

  37. A. W. Thompson and O. Buck:Met. Trans. A, 1976, vol. 7A, p. 329.

    Article  CAS  Google Scholar 

  38. A. J. Bursle: Private communication, Southwest Research Institute, San Anto- nio, TX 78284, 1977.

Download references

Author information

Authors and Affiliations

Authors

Additional information

Formerly Research Associate, Department of Metallurgy and Mining Engineering, University of Illinois.

Formerly Corrosion-Control Analyst with the Physical Plant at the University of Illinois.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eliezer, D., Chakrapani, D.G., Altstetter, C.J. et al. The influence of austenite stability on the hydrogen embrittlement and stress- corrosion cracking of stainless steel. Metall Trans A 10, 935–941 (1979). https://doi.org/10.1007/BF02658313

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02658313

Keywords

Navigation