Skip to main content
Log in

Mathematical model of the thermal processing of steel ingots: Part II. Stress model

  • Process Control
  • Published:
Metallurgical Transactions B Aims and scope Submit manuscript

Abstract

A mathematical model has been developed to predict the internal stresses generated in a steel ingot during thermal processing. The thermal history of the ingot has been predicted by a finite-element, heat-flow model, the subject of the first part of this two-part paper, which serves as input to the stress model. The stress model has been formulated for a two-dimensional transverse plane at mid-height of the ingot and is a transient, elasto-viscoplastic, finite-element analysis of the thermal stress field. Salient features of the model include the incorporation of time-temperature and temperature-dependent mechanical properties, and volume changes associated with nonequilibrium phase transformation. Model predictions demonstrate that the development of internal stresses in the ingot during thermal processing can be directly linked to the progress of the phase transformation front. Moreover, the low strain levels calculated indicate that metallurgical embrittlement must be very important to the formation of cracks in addition to the development of high tensile stresses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Mathew and H. Brody:Nuclear Metallurgy, 1976, vol. 20, Part 2, pp. 978–90.

    Google Scholar 

  2. F.G. Rammerstorfer, C. Jaquemar, D. Fischer, and H. Wiesinger:Numerical Methods in Thermal Problems, July 1979, pp. 712–22.

  3. A. Grill and K. Schwerdtfeger:Ironmaking and Steelmaking, 1979, vol. 3, pp. 131–35.

    Google Scholar 

  4. A. Palmaers, A. Etienne, and J. Mignon:Stahl und Eisen, Sept. 1979, vol. 99, No. 19, pp. 1039–50.

    Google Scholar 

  5. J. R. Williams, R. W. Lewis, and K. Morgan:Int. J. Numer. Methods in Eng., 1979, vol. 14, No. 1, pp. 1–9.

    Article  CAS  Google Scholar 

  6. J. O. Kristiansson:Journal of Thermal Stresses, 1982, vol. 5, pp. 315–30.

    Google Scholar 

  7. T. Hara:Tetsu-to-Hagané Overseas, 1964, vol. 4, No. 3, pp. 296–303.

    Google Scholar 

  8. R. H. Tien and V. Koump:J. Applied Mechanics (Trans. ASME), 1969, vol. 36, pp. 763–67.

    CAS  Google Scholar 

  9. K. Sakiu:Tetsu-to-Hagané, 1979, vol. 60, No. 12, pp. 1591–98.

    Google Scholar 

  10. B. G. Thomas, I. V. Samarasekera, and J. K. Brimacombe:Metall. Trans. B, 1987, vol. 18B, pp. 119–30.

    CAS  Google Scholar 

  11. B. Barber and A. Perkins:First International Conference on Numerical Methods in Thermal Problems, Swansea, England, 1979, pp. 691–701.

  12. B. G. Thomas, I. V. Samarasekera, and J. K. Brimacombe:ISS Transactions, 1986, vol. 7, pp. 21–29.

    CAS  Google Scholar 

  13. A. Grill and K. Sorimachi:Int. J. Numer. Methods in Eng., 1979, vol. 14, pp. 499–505.

    Article  Google Scholar 

  14. O. C. Zienkiewicz and I. C. Cormeau:Int. J. Numer. Methods in Eng., 1974, vol. 8, pp. 821–45.

    Article  Google Scholar 

  15. A. Mendelson:Plasticity—Theory and Applications, R. E. Krieger Publishing, Malabar, FL, 1968 (reprinted 1983), pp. 213–15.

    Google Scholar 

  16. O. C. Zienkiewicz:The Finite Element Method, 3rd ed., McGraw-Hill, London, 1977.

    Google Scholar 

  17. Y. Yamada, N. Yoshimura, and T. Sakurai:Int. J. Mech. Sci., Pergamon Press, 1968, vol. 10, pp. 343–54.

    Article  Google Scholar 

  18. O. C. Zienkiewicz, S. Valliappan, and I. P. King:Int. J. Numer. Methods in Eng., 1969, vol. 1, pp. 75–100.

    Article  Google Scholar 

  19. B. G. Thomas: Ph.D. Thesis, University of British Columbia, Vancouver, BC, Canada, 1985.

  20. P. J. Wray:Modeling of Casting and Welding Processes, AIME Conference Proceedings, 1980, pp. 245–57.

  21. G. Forsythe and C. Moler:Computer Solution of Linear Algebraic Systems, Prentice Hall, Englewood Cliffs, NJ, 1967.

    Google Scholar 

  22. S. R. Bodner and Y. Partom:J. Applied Mechanics, 1975, vol. 42, pp. 385–89.

    Google Scholar 

  23. E. W. Hart:J. of Eng. Materials and Technology (Trans. ASME), 1976, vol. 98, pp. 193–201.

    CAS  Google Scholar 

  24. L. Anand:J. of Eng. Materials and Technology (Trans. ASME), 1982, vol. 104, pp. 12–17.

    Article  Google Scholar 

  25. A. Palmaers:CRM, Oct. 1977.

  26. T. Sakiu and M. Ohashi:Tetsu-to-Hagané, 1981, vol. 67, No. 11, pp. 134–43.

    Google Scholar 

  27. P. Feltham:Proc. Roy. Soc., 1953, vol. 66, No. 10-B, pp. 865–83.

    Google Scholar 

  28. P. J. Wray: E. C. Bain Laboratory for Fundamental Research, US Steel, Monroeville, PA, 1965, No. 1072, and 1968, No. 1113.

  29. S. Sakui and T. Sakai:ISIJ Trans., 1977, vol. 63, No. 2, pp. 285–93.

    CAS  Google Scholar 

  30. B. Y. Pines and A. F. Sirenko:Soviet Physics—Solid State, January 1963, vol. 4, No. 7, pp. 1393–99.

    Google Scholar 

  31. O. D. Sherby:Acta Metall., 1962, vol. 10, pp. 135–47.

    Article  CAS  Google Scholar 

  32. J. Robbins, O. C. Shepard, and O. D. Sherby:JISI, October 1961, vol. 199, pp. 175–80.

    CAS  Google Scholar 

  33. G. W. Greenwood and R. F. Johnson:Proceedings of the Royal Society, 1965, vol. A283, pp. 403–22.

    Google Scholar 

  34. D. M. Keane, C. M. Sellars, and W. J. Tegart: Univ. of Sheffield Dept. of Metallurgy, July 1966.

  35. P. J. Wray:Metall. Trans. A, 1984, vol. 15A, pp. 2041–58.

    CAS  Google Scholar 

  36. E. B. Hawbolt, B. Chau, and J. K. Brimacombe:Metall. Trans. A, 1983, vol. 14A, pp. 1803–15.

    CAS  Google Scholar 

  37. O. M. Puhringer:Stahl und Eisen, 1976, vol. 96, No. 6, pp. 279–84.

    Google Scholar 

  38. W. Köster:Z. Metalkde., 1948, vol. 39, pp. 1–9.

    Google Scholar 

  39. C. Boulanger and C. Crussard:Revue de Metallurgie, 1956, No. 9, pp. 715–28.

    Google Scholar 

  40. D. R. Hub:Proc. IVth Intern. Cong. Acoustics, Copenhagen, 1962, No. 551.

  41. P. J. Wray: E. C. Bain Laboratory for Fundamental Research, US Steel, Monroeville, PA, June 1965, No. 1054.

  42. B. A. Boley and J. Weiner:Theory of Thermal Stresses, John Wiley and Sons, Inc., New York, NY, 1960, pp. 272–81, 311.

    Google Scholar 

  43. E. P. Popov:Introduction to Mechanics of Solids, Prentice-Hall Inc., Englewood Cliffs, NJ, 1968, pp. 316–26.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

B. G. THOMAS, formerly a Graduate Student at the University of British Columbia

Rights and permissions

Reprints and permissions

About this article

Cite this article

Thomas, B.G., Samarasekera, I.V. & Brimacombe, J.K. Mathematical model of the thermal processing of steel ingots: Part II. Stress model. Metall Trans B 18, 131–147 (1987). https://doi.org/10.1007/BF02658438

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02658438

Keywords

Navigation