Skip to main content
Log in

A general mechanism of martensitic nucleation: Part III. Kinetics of martensitic nucleation

  • Transformations
  • Published:
Metallurgical Transactions A Aims and scope Submit manuscript

Abstract

The growth of martensitic fault embryos in the fault plane, the development of their interfacial structure, and the thickening of the embryos normal to the fault plane are examined as possible rate limiting steps in the total martensitic nucleation process. Growth of the embryos in the fault plane appears the most probable rate limiting step, capable of accounting for both the observed isothermal and athermal kinetic behavior depending on the parameters (such as activation volume) which control the motion of the transformational dislocations. The thermally activated nucleation of dislocation loops responsible for lattice invariant deformations is a possible rate limiting step for some isothermal transformations, though such deformations are not required for all martensitic transformations. Embryo thickening by the nucleation of discrete loops of transformation dislocations appears improbable in bulk material; instead, a plausible pole mechanism for embryo thickening is presented which incorporates existing “forest” dislocations intersected by embryos growing in the fault plane. Lattice softening phenomena may lower the critical chemical driving force for nucleation, but are not essential for martensitic nucleation by the proposed faulting mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. B. Olson and M. Cohen:Met. Trans. A, vol. 7A, 1976, pp. 1897–904.

    CAS  Google Scholar 

  2. G. B. Olson and M. Cohen:Met. Trans. A, vol. 7A, 1976, pp. 1905–14.

    CAS  Google Scholar 

  3. J. F. Breedis and W. D. Robertson:Acta Met., 1963, vol. 11, p. 547.

    Article  CAS  Google Scholar 

  4. F. Lecroisey and A. Pineau:Met. Trans., 1972, vol. 3, p. 387.

    Article  CAS  Google Scholar 

  5. H. Conrad:J. Metals, July 1964, p. 582.

  6. J. E. Dorn:Dislocation Dynamics, A. R. Rosenfield, G. T. Hahn, A. L. Bement, and R. I. Jaffee, eds., p. 27, McGraw-Hill, New York, 1968.

    Google Scholar 

  7. P. L. Ferraglio and K. Mukherjee:Acta Met., 1974, vol. 22, p. 835.

    Article  CAS  Google Scholar 

  8. C. L. Magee:Phase Transformations, p. 115, ASM, 1970.

  9. C. L. Magee:Met. Trans., 1971, vol. 2, p. 2419.

    Article  CAS  Google Scholar 

  10. V. Raghavan and M. Cohen:Met. Trans., 1971, vol. 2, p. 2409.

    Article  CAS  Google Scholar 

  11. L. Kaufman: Private communication, Manlabs Inc., Cambridge, Mass., 1973.

  12. G. F. Boiling and R. H. Richman:Phil. Mag., 1969, vol. 19, p. 247.

    Article  ADS  Google Scholar 

  13. R. H. Richman: Private communication, Ford Motor Co., Dearborn, Mich., 1973.

  14. L. Kaufman and M. Cohen:Progr. Metal Phys., 1958, vol. 7, p. 165.

    Article  CAS  ADS  Google Scholar 

  15. F. C. Frank:Acta Met., 1953, vol. 1, p. 15.

    Article  CAS  Google Scholar 

  16. V. Raghavan and M. Cohen:Acta Met., 1972, vol. 20, p. 333.

    Article  CAS  Google Scholar 

  17. J. P. Hirth:Proc. of the Conf. on Relations between Structure and Strength in Metals and Alloys, p. 218, HMSO, 1963.

  18. H. Knapp and U. Dehlinger:Acta Met., 1956, vol. 4, p. 289.

    Article  CAS  Google Scholar 

  19. P. L. Manganon and G. Thomas:Met. Trans., 1970, vol. 1 p. 1577.

    Article  Google Scholar 

  20. A. H. Cottrell and B. A. Bilby:Phil. Mag., 1951, vol. 42, p. 573.

    MATH  CAS  Google Scholar 

  21. N. Thomas and D. J. Millard:Phil. Mag., 1952, vol. 43, p. 422.

    Google Scholar 

  22. J. A. Venables:Phil. Mag., 1961, vol. 6, p. 379.

    Article  CAS  ADS  Google Scholar 

  23. J. P. Hirth:Deformation Twinning, R. E. Reed-Hill, J. P. Hirth, and H. C. Rogers, eds., p. 112, Gordon and Breach, New York, 1964.

    Google Scholar 

  24. J. W. Christian:Physical Metallurgy, R. W. Cahn, ed., p. 521, North-Holland Publishing Co., Amsterdam, 1965.

    Google Scholar 

  25. M. Gedwill, C. Altstetter, and C. Wayman:Trans. TMS-AIME, 1964, vol. 230, p. 453.

    CAS  Google Scholar 

  26. G. B. Olson: Sc.D. Thesis, Appendix C, Massachusetts Institute of Technology, June, 1974.

  27. P. C. Clapp:Phys. Status Solidi (b), 1973, vol. 57, p. 561.

    Article  CAS  ADS  Google Scholar 

  28. D. deFontaine, N. E. Paton, and J. C. Williams:Acta Met., 1971, vol. 19, p. 1153.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This paper is Part III of a three-part series based on a thesis submitted by G. B. Olson for the degree of Sc.D. in Metallurgy at the Massachusetts Institute of Technology in June 1974.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Olson, G.B., Cohen, M. A general mechanism of martensitic nucleation: Part III. Kinetics of martensitic nucleation. Metall Trans A 7, 1915–1923 (1976). https://doi.org/10.1007/BF02659824

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02659824

Keywords

Navigation