Skip to main content
Log in

Internal strain and dislocations in Ga1−xAs crystals grown by liquid phase epitaxy/electroepitaxy

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Strain relaxed, low dislocation density InxGa1−xAs crystals, 0 < x <0.2, have been successfully grown by liquid phase electroepitaxy on the GaAs substrate, despite the crystal/substrate lattice mismatch. Residual strain in these novel substrates is below 10−4, at least an order of magnitude lower than in the molecular beam epitaxially (MBE) or metalorganic chemical vapor deposition-grown ternary buffer layers of similar composition. Threading dislocation density induced by both the crystal/substrate lattice mismatch and unavoidable composition variations has been reduced from the low 106 cm−2 range, while growing directly on GaAs, to the mid 104 cm-2 by employing both the MBE grown ternary buffer layer and selective lateral overgrowth of an SiO2 mask which, prior to the crystal growth, was deposited on the buffer layer and patterned by photolithography with 10 μm wide, oxide free seeding windows. The full width at half maximum of the rocking curves measured for InxGa1−xAs crystals grown by liquid phase epitaxy/electroepitaxy on patterned, closely lattice matched buffer layers was in the 20–23 arc s range. Further reduction of the dislocation density and a more uniform dislocation distribution is expected by modifying the initial growth conditions, improving substrate preparation, and optimizing the seeding window geometry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. See for instance, T. Bryskiewicz and A. Laferrière,J. Cryst. Growth 129, 429 (1993) and references therein.

    Article  CAS  Google Scholar 

  2. D.I. Westwood and D. A. Woolf,J.Appl.Phys. 73,1187(1993).

    Article  CAS  Google Scholar 

  3. M. Tamura, A. Hashimoto and Y. Nakatsugawa,J. Appl. Phys.72, 3398 (1992).

    Article  CAS  Google Scholar 

  4. K.L. Kavanagh, M.A. Capano, L.W. Hobbs, J.C. Barbour, P.M.J. Marée, W. Schaff, J.M. Mayer, D. Pettit, J.M. Woodall, J.A. Stroscio and R.M. Feenstra,J. Appl. Phys. 64, 4843 (1988).

    Article  CAS  Google Scholar 

  5. X.J. Bao, T.E. Schlesinger, W.A. Bonner, R.E. Nahory, H.L. Gilchrist, E. Berry, E.A. Beam and S. Mahajan,J. Electron. Mater. 20, 207 (1991) and references therein.

    CAS  Google Scholar 

  6. T. Kusunoki, Ch. Takenaka and K. Nakajima,J. Cryst. Growth 115, 723 (1991) and references therein.

    Article  CAS  Google Scholar 

  7. T. Ozawa, Y. Hayakawa and M. Kumagawa,J. Cryst. Growth 109, 212 (1991).

    Article  CAS  Google Scholar 

  8. See for fninstance, L.M. Foster and J.F. Woods,J. Electrochem. Soc. 18,1175(1971).

    Article  Google Scholar 

  9. P.O. Hansson, A. Gustafsson,A. Albrecht, R. Bergmann,H.P. Strunk and E. Bauser,J. Cryst. Growth 121, 790 (1992) and references therein.

    Article  CAS  Google Scholar 

  10. Y. Ujiieand T. Nishinaga,Jpn. J.Appl.Phys. 28,L337(1989).

    Article  CAS  Google Scholar 

  11. J.P. McCaffrey, B. Bryskiewicz, T. Bryskiewicz and E. Jiran,Appl. Phys. Lett. 64, 2344 (1994).

    Article  CAS  Google Scholar 

  12. T. Bryskiewicz, E. Jiran, B. Bryskiewicz and M. Buchanan,Mat. Res. Soc. Symp. Proc. 340, 367 (1994).

    CAS  Google Scholar 

  13. See for instance, H. Sugiura, T. Nishida, R. Iga, T. Yamada and T. Tamamura,J. Cryst. Growth 121, 579 (1992).

    Article  CAS  Google Scholar 

  14. See for instance, T. Bryskiewicz,Prog. Crystal Growth and Characterization, ed. M. Pamplin, 12, 29 (1986) and refer- ences therein.

    Article  CAS  Google Scholar 

  15. J.I. Daniele and A.J. Hebling,J. Appl. Phys. 52,4325 (1981).

    Article  CAS  Google Scholar 

  16. T. Bryskiewicz, P. Edelman, Z. Wasilewski, D. Coulas andJ. Noad,J. Appl. Phys. 68, 3018 (1990).

    Article  CAS  Google Scholar 

  17. Z. Wasilewski, unpublished.

  18. S. Zhang and T. Nishinaga,J. Cryst. Growth 99, 292 (1990).

    Article  CAS  Google Scholar 

  19. K.J. Moore, G. Duggan, G.Th. Jaarsma, P.F. Fewster and K. Woodbridge,Phys. Rev. B 43, 43 (1991).

    Article  Google Scholar 

  20. P. Poole, A. Roth and S. Charbonneau, unpublished.

  21. K. Okamoto, T. Tosaka and K. Yamaguchi,Jpn. J. Appl. Phys. 30, 1239 (1991).

    Article  CAS  Google Scholar 

  22. See for instance, Yu.B. Bolkhovitiayanov,Prog. Crystal Growth and Characterization, ed. J.B. Mullin, 19,159 (1989) and references therein.

    Article  Google Scholar 

  23. P.B. Hirsch,Progress in Metal Physics, eds. B. Chalmers and R. King, 6, 236 (1956).

    Article  CAS  Google Scholar 

  24. E.A. Fitzgerald, G.P. Watson, R.E. Proano, D.G. Ast, P.D. Kirchner, G.D. Petit and J.M. Woodall,J. Appl. Phys. 65, 2220(1989).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bryskiewicz, B., Bryskiewicz, T. & Jiran, E. Internal strain and dislocations in Ga1−xAs crystals grown by liquid phase epitaxy/electroepitaxy. J. Electron. Mater. 24, 203–209 (1995). https://doi.org/10.1007/BF02659896

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02659896

Key words

Navigation