Skip to main content
Log in

High thermoelectric figures of merit in PbTe quantum wells

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

High-quality Pb1−xEuxTe/PbTe multiple quantum wells (MQWs) have been grown by molecular beam epitaxy. The measured 300K thermoelectric properties have been compared with that of the best bulk PbTe. This experimental investigation is the first detailed study of MQW structures designed to improve ZT of thermoelectric materials and has resulted in a breakthrough in the decades-long ZT ≅ 1 barrier for a room-temperature thermoelectric material. A value of Z2DT >1.2 has been achieved for these PbTe quantum wells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T.C. Harman, “Superlattice Structures Particularly Suitable for Use as Thermoelectric Cooling Materials,” U. S. Patent No. 5,415,699, issued May 16, 1995.

  2. L.D. Hicks and M.S. Dresselhaus,Phys. Rev B 47 12727 (1993).

    Article  CAS  Google Scholar 

  3. L.D. Hicks, T.C. Harman and M.S. Dresselhaus,Appl. Phys Lett. 63, 3230 (1993).

    Article  CAS  Google Scholar 

  4. See, for example, F.D. Rosi,Solid-State Electron. 11, 833 (1968).

    Article  Google Scholar 

  5. D.L. Partin,IEEE J. Quantum Electron. 24, 1716 (1988).

    Article  CAS  Google Scholar 

  6. G. Springholz, G. Ihninger, G. Bauer, M. M. Olver, J.Z. Pastalan, S.E. Romaine and B.B. Goldberg,Appl. Phys. Lett. 63,2908 (1993); G. Springholz and G. Bauer,Appl. Phys. Lett. 60, 1600 (1992); G. Springholz, G. Bauer and G. Ihninger,J. Cryst. Growth 127, 302 (1993).

    Article  CAS  Google Scholar 

  7. M.M. Olver, J.Z. Pastalan, S.E. Romaine, B.B. Goldberg, G. Springholz, G. Ihninger and G. Bauer,Solid State Commun. 89, 693 (1994); S. Yuan, G. Springholz, G. Bauer and M. Kriechbaum,Phys. Rev. B 49, 5476 (1994); personal communication from G. Bauer.

    Article  CAS  Google Scholar 

  8. For a description of the unmodified system see A.R. Calawa,Appl. Phys. Lett. 33, 1020 (1978).

    Article  CAS  Google Scholar 

  9. T.C. Harman,J. Nonmetals 1, 183 (1973).

    CAS  Google Scholar 

  10. See, for example, T.C. Harman and J.M. Honig,Thermoelectric and Thermomagnetic Effects and Applications (New York: McGraw-Hill, 1967) and references therein.

    Google Scholar 

  11. L.D. Hicks, T.C. Harman, X. Sun and M.S. Dresselhaus,Phys. Rev. B 52, R10493 (1996).

    Article  Google Scholar 

  12. See, for example, G. Nimtz and B. Schlicht,Narrow-Gap Semiconductors, Springer Tracts in Modern Physics 98 (Berlin: Springer, 1983) and references therein.

    Google Scholar 

  13. See, for example,Thermoelectric Materials and Devices, ed. I.B. Cadoff and E. Miller (New York: Reinhold Publishing Corp., 1960), p. 84; T.C. Harman,Semiconductor Products 6, 13 (1963).

    Google Scholar 

  14. D.L. Partin,J. Electron. Mater. 13, 493 (1984).

    CAS  Google Scholar 

  15. A. Ishida, S. Matsuura, M. Mizuno and H. Fujiyasu,Appl. Phys. Lett. 51, 478 (1987).

    Article  CAS  Google Scholar 

  16. S. Yaun, H. Krenn, G. Springholz and G. Bauer,Appl. Phys. Lett. 62, 885 (1993).

    Article  Google Scholar 

  17. A.J. Strauss, personal communication.

  18. A.J. Strauss,J. Electron. Mater. 2, 553 (1973). $

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Harman, T.C., Spears, D.L. & Manfra, M.J. High thermoelectric figures of merit in PbTe quantum wells. J. Electron. Mater. 25, 1121–1127 (1996). https://doi.org/10.1007/BF02659913

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02659913

Key words

Navigation