Skip to main content
Log in

The production and utility of recovered dislocation substructures

  • Symposium on Mechanical-Thermal Processing and Dislocation Substructure Strengthening
  • Published:
Metallurgical Transactions A Aims and scope Submit manuscript

Abstract

The production of dislocation substructures by cold working and recovery, fatigue, creep and hot working are reviewed. The relationships of subgrain size and dislocation density to the causal parameters of strain, strain rate, strain amplitude, temperature, stress and time (as applicable) are presented for each process. The importance of dislocation mechanisms such as climb, cross-glide, annihilation and subboundary formation are explained. The relative capabilities and limitations of each mode of creation with respect to both external processing and internal mechanisms are explored. The effects of the metal's stacking fault energy, of solid solution and of particle dispersion on structure and behavior are presented. The properties of the different kinds of substructures for room temperature and creep service are examined. The need for modification of the Petch relationship between yield strength and subgrain size is explored. The thermal stability is shown to be an important factor for creep service. It is concluded that the most suitable modes of substructure preparation are either cold working and recovery or hot working both from the view point of fitting into current industrial practice and from that of dependable, useful service properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. J. McQueen and W. J. McG. Tegart:Sci. Amer., 1975, vol. 232, pp. 116–25.

    Article  Google Scholar 

  2. R. J. McElroy, and Z. C. Szkopiak:Int. Met. Rev., 1972, vol. 17, pp. 175–202.

    CAS  Google Scholar 

  3. C. Laird:Treatise on Materials Science and Technology, Vol. 6, Plastic Deformation of Materials, R. J. Arsenault, ed., pp. 101–63 Academic Press, New York, N.Y., 1975.

    Google Scholar 

  4. A. K. Mukherjee:Ibid.,.

    Google Scholar 

  5. F. Garofalo:Fundamentals of Creep and Creep Rupture in Metals, Macmillan, New York, N.Y., 1965.

    Google Scholar 

  6. D. McLean:Mechanical Properties of Metals, pp. 262–85, John Wiley, New York, N.Y., 1962.

    Google Scholar 

  7. H. J. McQueen and J. J. Jonas:Treatise on Materials Science and Technology, Vol. 6, Plastic Deformation of Materials, pp. 393–493, Academic Press, New York, N.Y., 1975.

    Google Scholar 

  8. C. M. Sellars, and W.J. McG. Tegart:Int. Met. Rev., 1972, vol. 17, pp. 1–24.

    CAS  Google Scholar 

  9. J. J. Jonas, C. M. Sellars, and W. J. McG. Tegart:Met. Rev., 1969, vol. 14, pp. 1–24.

    Google Scholar 

  10. H. J. McQueen and J. J. Jonas:Manufacturing Eng. Trans. (SME), 1973, vol. 2, pp. 209–33.

    Google Scholar 

  11. W. J. McG Tegart:Ductility, pp. 133–77, ASM, Metals Park, Ohio, 1968.

    Google Scholar 

  12. H. J. McQueen.J. Metals, 1968, vol. 20, no. 4, pp. 31–38.

    CAS  Google Scholar 

  13. H. P. Stüwe, and B. Drube:Z. Metallk., 1967, vol. 58, pp. 499–506.

    Google Scholar 

  14. C. Rossard, and P. Blain.Flat Rolled Products III (Met. Soc. Conf. 16), p. 3, Gordon and Breach, New York, N.Y., 1962.

    Google Scholar 

  15. D. Kuhlman-Wilsdorf:Work Hardening, J. P. Hirth and J. Weertman, eds., pp. 97–132, Gordon and Breach, New York, N.Y., 1968.

    Google Scholar 

  16. G. Langford, and M. Cohen:Trans. ASM, 1969, vol. 62, pp. 623–38.

    CAS  Google Scholar 

  17. D. Kalish, and B. G. LeFevre:Met. Trans. A, 1970, vol. 6A, pp. 1319–24.

    Google Scholar 

  18. H. J. McQueen, and J. E. Hockett:Met. Trans. A, 1970, vol. I, pp. 2997–3004.

    Google Scholar 

  19. W. C. Leslie, J. T. Michalak, and F. W. Aul:Iron and Its Dilute Solid Solutions, pp. 119–216, Interscience, New York, N.Y., 1963.

    Google Scholar 

  20. A. S. Keh, and S. Weissmann:Electron Microscopy and Strength of Crystals, pp. 231–300, Interscience, New York, N.Y., 1963.

    Google Scholar 

  21. P. Gay, P. B. Hirsch, and A. Kelly,Acta Crystallogr., 1954, vol. 7, pp. 41–49.

    Article  CAS  Google Scholar 

  22. P. B. Hirsch, R. W. Horne, and M. J. Whelan:Dislocations and Mechanical Properties of Crystals, p. 92, John Wiley, New York, N.Y., 1957.

    Google Scholar 

  23. P. R. Swann:Electron Microscopy and Strength of Crystals, G. Thomas and J. Washburn, eds., pp. 131–82, Interscience, New York, N.Y., 1963.

    Google Scholar 

  24. A. H. Cottrell, and R. J. Stokes:Proc. Roy. Soc., London, 1955, vol. A233, p. 17.

    CAS  Google Scholar 

  25. D. L. Holt, S. G. Babcock, S. J. Green, and C. J. Maiden:Trans. ASM, 1967, vol. 60, pp. 152–59.

    CAS  Google Scholar 

  26. P. A. Beck, B. G. Ricketts, and A. Kelly:Trans. TMS-AIME, 1959, vol. 215, p. 949.

    CAS  Google Scholar 

  27. E. C. W. Perryman:Creep and Recovery, pp. 111–45,ASM, Cleveland, Ohio, 1956.

    Google Scholar 

  28. P. Morgand:Mem. Sci. Rev. Met., 1964, vol. 61, pp. 272, 316.

    Google Scholar 

  29. J. L. Lytton, K. H. Westmacott, and L. C. Potter:Trans. TMS-AIME, 1965, vol. 233, pp. 1757–65.

    CAS  Google Scholar 

  30. R. A. Vandermeer, and P. Gordon:Recovery and Recrystallization of Metals, L. Himmel, ed., pp. 211–40, Gordon and Breach, New York, N.Y., 1963.

    Google Scholar 

  31. S. Weissman, T. Imura, and N. NosokawaIbid,.

    Google Scholar 

  32. Hsun Hu:Ibid,.

    Google Scholar 

  33. J. E. Bailey:Electron Microscopy and Strength of Crystals, pp. 535–74, Interscience, New York, N.Y., 1963.

    Google Scholar 

  34. F. Bourelier, and J. Montuelle:Mem. Sci. Rev. Met., 1968, vol. 65, pp. 65–76.

    CAS  Google Scholar 

  35. J. Talbot:Recovery and Recrystallization of Metals, L. Himmel, ed., p. 269, Gordon and Breach, New York, N.Y., 1963.

    Google Scholar 

  36. M. L. Bershtein, E. L. Demina, E. E. Liberman, and L. G. Chernukha:Met. Sci. Heat Treat. Met., 1963, no. 5, pp. 289–94.

    Article  Google Scholar 

  37. J. Hino, P. G. Shewmon, and P. A. Beck:Trans. AIME, 1952, vol. 194, p. 873.

    Google Scholar 

  38. P. H. Thornton and R. W. Cahn:J. Inst. Metals, 1960-61, vol. 89, p. 455.

    Google Scholar 

  39. J. H. Auld, R. I. Garrod, and T. R. Thomson:Acta Met., 1957, vol. 5, p. 741.

    Article  CAS  Google Scholar 

  40. S. R. Goodman, and Hsun Hu:Trans. TMS-AIME, 1964, vol. 230, pp. 1413–19; vol. 233, pp. 103–10.

    CAS  Google Scholar 

  41. F. J. Humphreys, and J. W. Martin:Phil. Mag., 1968, vol. 17, pp. 365–80.

    CAS  Google Scholar 

  42. C. A. Stubbington, and P. J. Forsythe:Acta Met., 1966, vol. 14, pp. 5–12.

    Article  CAS  Google Scholar 

  43. H. Abdel-Raouf, P. P. Benham, and A. Plumtree:Can. Met. Quart., 1971, vol. 10, 87–95.

    Google Scholar 

  44. J. E. Pratt:J. Mater., 1966, vol. 1, pp. 77–88.

    CAS  Google Scholar 

  45. J. C. Groskreutz:Fatigue-An Interdisciplinary Approach, J. J. Burkeet al, eds., pp. 27–58, Syracuse University, Syracuse, N.Y., 1964.

    Google Scholar 

  46. R. N. Wilson, and P. J. E. Forsythe:J. Inst. Metals, 1959, vol. 87, p. 336.

    Google Scholar 

  47. P. J. E. Forsythe:J. Inst. Metals, 1951, vol. 80, p. 181.

    Google Scholar 

  48. E. E. Lauffer, and W. N. Roberts.Phil. Mag., 1966, vol. 14, p. 65.

    Google Scholar 

  49. P. P. Benham:Met. Rev., 1958, vol. 3, pp. 203–34.

    Google Scholar 

  50. R. Lagneborg:Int. Met. Rev., 1972, vol. 17, pp. 130–46.

    CAS  Google Scholar 

  51. C. R. Barrett, W. D. Nix, and O. D. Sherby:Trans. ASM, 1966, vol. 59, pp. 3–15.

    CAS  Google Scholar 

  52. R. W. Guard:Creep and Recovery, pp. 251–54, ASM, Cleveland, Ohio, 1957.

    Google Scholar 

  53. S. F. Exell, and D. H. Warrington:Phil. Mag., 1972, ser. 8, vol. 26, pp. 1121–36.

    CAS  Google Scholar 

  54. G. Pollard, and J. Nutting:J. Inst. Metals, 1964-65, vol. 93, p. 464.

    Google Scholar 

  55. J. A. Mazza, and G. Willoughby,J. Iron Steel Inst., 1966, vol. 204, pp. 718–26.

    Google Scholar 

  56. D. Hardwick, C. M. Sellars, and W. J. McG. Tegart:J. Inst. Metals, 1961, vol. 90, pp. 21–22.

    Google Scholar 

  57. G. J. Richardson, C. M. Sellars, and W. J. McG. Tegart:Acta Met., 1966, vol. 14, pp. 1225–36.

    Article  CAS  Google Scholar 

  58. S. Fulop, and H. J. McQueen:Superalloys: Processing, pp. H1-H21, Metals-Ceramics Information Center, Columbus, 1972.

    Google Scholar 

  59. S. H. Reichman, and J. W. Smythe:Int. J. Powder Met., 1970, vol. 13, pp. 114–29.

    Google Scholar 

  60. N. E. Klarquist: Unpublished research, Air Force Materials Laboratory, Wright-Patterson A. F. B., Dayton, Ohio, 1976.

  61. T. H. Alden:Treatise on Materials Science and Technology, Vol. 6, Plastic Deformation of Materials, pp. 226–66, Academic Press, New York, N.Y., 1975.

    Google Scholar 

  62. C. Rossard:Metaux Corros. Ind., 1960, vol. 35, pp. 102–15, 140–53, 190–205.

    Google Scholar 

  63. H. J. McQueen, W. A. Wong, and J. J. Jonas:Can. J. Phys., 1967, vol. 45, pp. 1226–35.

    Google Scholar 

  64. D. L. Holt:J. Appl. Phys., 1970, vol. 41, pp. 3197–201.

    Article  Google Scholar 

  65. V. K. Lindroos:Acta Polytech. Scand., 1968, vol. 76, pp. 1–52.

    Google Scholar 

  66. V. K. Lindroos, and H. M. Miekk-oja:Phil. Mag., 1967, vol. 16, pp. 593–610.

    CAS  Google Scholar 

  67. V. K. Lindroos, and H. M. Miekk-joa,Phil. Mag., 1968, vol. 17, pp. 119–33.

    CAS  Google Scholar 

  68. D. H. Sastry, M. J. Luton, and J. J. Jonas:Phil. Mag., 1974, vol. 30, pp. 115–27.

    CAS  Google Scholar 

  69. J. C. M. Li:J. Appl. Phys., 1961, vol. 32, pp. 1873–85.

    Article  Google Scholar 

  70. J. Weertman,J. Appl. Phys. 1957, vol. 28, pp. 362–64.

    Article  CAS  Google Scholar 

  71. C. R. Barrett, and W. D. Nix:Acta Met., 1965, vol. 13, pp. 1247–58.

    Article  Google Scholar 

  72. J. J. Jonas, D. R. Axelrad, and J. L. Uvira:Trans. Jap. Inst. Metals, 1969, vol. 9, suppl., pp. 257–67.

    Google Scholar 

  73. D. J. Abson, and J. J. Jonas:J. Nucl. Mater., 1972, vol. 42, pp. 73–85.

    Article  CAS  Google Scholar 

  74. H. J. McQueen,Trans. Jap. Inst. Metals, 1968, vol. 9, suppl., pp. 170–77.

    CAS  Google Scholar 

  75. G. R. Dunstan, and R. W. Evans:Metallurgia, 1969, vol. 79, pp. 96–99.

    Google Scholar 

  76. R. A. Petkovic Djaic and J. J. Jonas:J. Iron Steel Inst., 1972, vol. 210, pp. 256–61;Met. Trans., 1973, vol. 4, pp. 4–14.

    Google Scholar 

  77. R. A. Petkovic, M. J. Luton, and J. J. Jonas:Can. Met. Quart., 1975, vol. 14, pp. 137–45.

    CAS  Google Scholar 

  78. R. A. Petkovic, M. J. Luton, and J. J. Jonas:The Hot Deformation of Austenite, AIME, New York, N.Y., 1976, (in press).

    Google Scholar 

  79. H. Weiss, A. Gittins, G. G. Brown, and W. J. McG. Tegart:J. Iron Steel Inst., 1973, vol. 211, pp. 703–09.

    CAS  Google Scholar 

  80. J-P. A. Immarigeon, and J. J. Jonas:Acta Met., 1971, vol. 19, pp. 1053–61.

    Article  CAS  Google Scholar 

  81. G. Glover, and C. M. Sellars:Met. Trans., 1974, vol. 4, pp. 765–75.

    Article  Google Scholar 

  82. C. Rossard, and P. Blain:Rev. Met., 1958, vol. 55, pp. 595–98; 1962, vol. 59, pp. 233–36.

    Google Scholar 

  83. H. J. McQueen:Metal Progr., 1969, vol. 95, no. 1, pp. 131–34.

    Google Scholar 

  84. C. Rossard:Rev. Met., 1968, vol. 65, pp. 181–95.

    CAS  Google Scholar 

  85. W. J. McG. Tegart:Metals Australia, 1971, vol. 3, no. 1, pp. 3–8.

    Google Scholar 

  86. R. F. Dewsnap:J. Iron Steel Inst., 1970, vol. 208, pp. 727–43.

    CAS  Google Scholar 

  87. J. D. Jones, and A. B. Rothwell:Deformation Under Hot Working Conditions (SP108), pp. 78–82, Iron Steel Inst. London, 1968.

    Google Scholar 

  88. M. J. Luton, and C. M. Sellars:Acta Met., 1969, vol. 17, pp. 1033–43.

    Article  CAS  Google Scholar 

  89. J. P. Sah, G. J. Richardson, and C. M. Sellars:J. Aust. Inst. Metals, 1969, vol. 14, pp. 292–97.

    CAS  Google Scholar 

  90. J. P. Sah, G. J. Richardson, and C. M. Shllars:Metal Sci., 1974, vol. 8, pp. 325–31.

    CAS  Google Scholar 

  91. H. J. McQueen and S. Bergerson:Metal Sci. J., 1972, vol. 6, pp. 25–29.

    Article  CAS  Google Scholar 

  92. H. J. McQueen, R. Petkovic, H. Weiss, and L. G. Hinton:The Hot Deformation of Austenite, AIME, New York, N.Y., 1976, (in press).

    Google Scholar 

  93. D. R. Barraclough and C. M. Sellars:Inst. Phys. Conf. Ser., 1974, no. 21, pp. 111–23.

    CAS  Google Scholar 

  94. J. R. Cotner, and W. J. McG. Tegart:J. Inst. Metals, 1969, vol. 97, pp. 73–79.

    CAS  Google Scholar 

  95. G. A. Redfern, and C. M. Sellars:Deformation Under Hot Working Conditions (SP 108), pp. 29–37, Iron and Steel Inst., London, 1968.

    Google Scholar 

  96. M. J. Luton, and J. J. Jonas:Can. Met. Quart., 1972, vol. 11, pp. 79–90.

    CAS  Google Scholar 

  97. J. L. Robbins, O. C. Shepard, and O. D. Sherby:ASM Trans. Quart., 1967, vol. 60, pp. 205–16.

    CAS  Google Scholar 

  98. R. Bromley, and C. M. Sellars:Proc. Thrid Int. Conf. on Strength of Metals and Alloys, vol. 1, pp. 380–86, 1973.

    Google Scholar 

  99. V. S. Ivanova, and L. K. Gordienko:New Ways of Increasing the Strength of Metals, p. 109, Iron and Steel Inst, London, 1968.

    Google Scholar 

  100. J. M. Oblak, and W. A. Owczarski:Met. Trans., 1972, vol. 3, pp. 617–26.

    CAS  Google Scholar 

  101. B. H. Kear, J. M. Oblak, and W. A. Owczarski:J. Metals, 1972, vol. 24, no. 6, pp. 25–32.

    CAS  Google Scholar 

  102. K. J. Irvine, T. Gladman, J. Orr, and F. B. Pickering:J. Iron Steel Inst., 1970, vol. 208, pp. 717–26.

    CAS  Google Scholar 

  103. J. D. Baird, and R. R. Preston:Hot Workability of Steel, Iron Steel Inst., London, 1969.

    Google Scholar 

  104. J. J. Irani:J. Iron Steel Inst., 1968, vol. 206, pp. 363–74.

    CAS  Google Scholar 

  105. O. D. Sherby, M. J. Harrigan, L. Chamagne, and C. Sauve:Trans. ASM, 1969, vol. 62, pp. 575–80.

    CAS  Google Scholar 

  106. E. A. Chojnowski, and W. J. McG. Tegart:Metal Sci. J., 1968, vol. 2, pp. 14–18.

    Article  CAS  Google Scholar 

  107. C. M. Young, and O. D. Sherby: AFML-TR-69-294, Stanford University, Palo Alto, 1969.

    Google Scholar 

  108. P. Lacombe, and L. Beaujard:J. Inst. Metals, 1948, vol. 74, p. 1.

    Google Scholar 

  109. O. Kosik, D. J. Abson, and J. I. Jonas:J. Iron Steel Inst., 1971, vol. 209, pp. 624–71.

    CAS  Google Scholar 

  110. D. J. Abson, and J. J. Jonas:Metal Sci. J., 1970, vol. 4, pp. 24–18.

    CAS  Google Scholar 

  111. J. E. Hockett, and H. J. McQueen:Proc. 2nd Int. Conf. Strength of Metals and Alloys, pp. 991–95, ASM, Metals Park, Ohio, 1970.

    Google Scholar 

  112. D. H. Warrington:European Regional Conf. on Electron Microscopy, p. 354, Delft, 1960.

  113. D. M. Keane, C. M. Sellars, and W. J. McG. Tegart:Deformation Under Hot Working Conditions (SP108), pp. 21–28, Iron Steel Inst., London, 1968.

    Google Scholar 

  114. D. McLean and A. E. L. Tate:Rev. Met., 1951, vol. 48, pp. 765–75.

    Google Scholar 

  115. K. R. Van Horne:Aluminum: Vol. I Properties Physical Metallurgy and Phase Diagrams, Vol. III Fabrication and Finishing, pp. 178–108, III 81–112, ASM, Metals, Park, Ohio, 1967.

    Google Scholar 

  116. R. F. Ashton:J. Metals, 1969, vol. 22, no. 9, pp. 35–38.

    Google Scholar 

  117. J. W. Keegan:Metal Progr., 1967, vol. 92, no. 2, pp. 131–33.

    Google Scholar 

  118. C. J. Adams, and W. M. Williams:Can. Met. Quart., 1970, vol. 9, pp. 475–84.

    CAS  Google Scholar 

  119. E. H. Chia and E. A. Starke:Met. Trans. A, 1977, vol. 8A, pp. 825–32.

    CAS  Google Scholar 

  120. J. J. Irani, and P. R. Taylor:Deformation Under Hot Working Conditions (SP 108), pp. 83–96, Iron Steel Inst., London, 1968.

    Google Scholar 

  121. O. Johari and G. Thomas,Trans. ASM, 1965, vol. 58, pp. 563–78.

    CAS  Google Scholar 

  122. A. J. McEvily, R. H. Bush, F. W. Schaller, and D. J. Schmatz:Trans. ASM, 1963, vol. 56, p. 753.

    CAS  Google Scholar 

  123. R. L. Craik, M. J. May, and D. J. Latham:Met. Eng. Quart., 1969, vol. 9, no. 3, pp. 12–21.

    Google Scholar 

  124. J. Schey:Acta Technol. Acad. Sci. Hung, 1957, vol. 16, pp. 131–52.

    CAS  Google Scholar 

  125. M. G. Lozinskii, V. S. Mirotvorkii, and E. I. Antipova:Metal Science and Heat Treatment of Metals, 1963, no. 5–6, pp. 294–99.

    Google Scholar 

  126. V. D. Sadovskyet al.:Phys. Metals Metallogr., 1964, vol. 17, no. 6, pp. 47–53.

    Google Scholar 

  127. C. J. Ball:Phil. Mag., 1957, vol. 2, pp. 1011–17.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This paper is based on a presentation made at a symposium on “Mechanical-Thermal Processing and Dislocation Substructure Strengthening”, held at the Annual Meeting in Las Vegas, Nevada, on February 23, 1976, under the sponsorship of the TMS/IMD Heat Treating Committee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

McQueen, H.J. The production and utility of recovered dislocation substructures. Metall Trans A 8, 807–824 (1977). https://doi.org/10.1007/BF02661562

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02661562

Keywords

Navigation