Skip to main content
Log in

Modeling of metallurgical emulsions

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

Emulsification behavior caused by gas bubbles rising through a slag/metal interface has been studied in both a thin-slice model and a three-dimensional model using low-temperature oil/aqueous and oil/mercury analogues. A generalized model characterizing the transitional volume of droplets entrained in the upper phase in the emulsification process was developed. The transient volume of “metal” entrained,V d(t), following the start of bubbling followed the relationV d(t) =V (1 −e (t/Τ)). This model is also of general significance to other metallurgical emulsification processes, such as those induced by iron ore reduction and top blowing, regardless of the mechanisms of droplet generation. Based on this model, the birth rate and mean residence time of droplets dispersed by rising bubbles can be quantified. Dimensional analysis was used to express the volume of lower liquid carried up into the emulsionper bubble, thereby allowing better estimates of the droplet birth rate in a practical emulsification process induced by bottom blowing. Emulsification behaviors in industrial in-bath smelting processes were interpreted with the present modeling results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Ibaraki, M. Kanemoto, S. Ogato, M. Matsuo, H. Hirata, and H. Katayama:SNRC 90, Pohang, Korea, 1990, pp. 351-61.

  2. R. J. Fruehan:Savard/Lee Int. Symp. on Bath Smelting, J. K. Brimacombe, P. J. MacKay, G. J. W. Kor, C. Bickert, and M. G. Rannade, eds., TMS, Warrendale, PA, 1992, pp. 233–48.

    Google Scholar 

  3. D. Poggi, R. Minto, and W.G. Davenport:J. Met., 1969, Nov., p. 40.

  4. W.G. Davenport, A.V. Bradshaw, and F.D. Richardson:J. Iron Steel Inst., 1967, vol. 205 (10), p. 1034.

    CAS  Google Scholar 

  5. W.F. Porter, F.D. Richardson, and K.N. Subramanian:Heat and Mass Transfer in Process Metallurgy, A.W. Hills, ed., IMM, London, 1967, p. 79.

    Google Scholar 

  6. S. Tanaka and R.I.L. Guthrie:6th Process Technology Conf. Proc, Apr. 1986, Washington, DC.

  7. S. Tanaka: Ph.D. Dissertation, McGill University, Montreal, 1986.

  8. S. Kim and R.J. Fruehan:Metall. Trans. B, 1987, vol. 18B, p. 381.

    CAS  Google Scholar 

  9. R.J. Matway, R.J. Fruehan, and H. Henein:Trans. ISS, 1989, Sept., p. 51.

  10. R.J. Matway, H. Henein, and R.J. Fruehan:Trans. ISS, 1991, Dec, p. 43.

  11. J. Mietz, S. Schneider, and F. Oeters:Steel Res., 1991, vol. 62 (1), pp. 1–9.

    CAS  Google Scholar 

  12. J. Mietz, S. Schneider, and F. Oeters:Steel Res., 1991, vol. 62 (1), pp. 10–15.

    CAS  Google Scholar 

  13. D.G.C. Robertson and B.B. Staple:Process Engineering of Pyrometatlurgy, M.J. Jones, ed., Institute of Mining and Metallurgy, London, 1974, p. 51.

    Google Scholar 

  14. J. Ishida, K. Yamaguchi, S. Sugura, S. Yamano, S. Hayakawa, and N. Demukai:Denki Seikou, (Electric Steelmaking, in English), 1981, vol. 52, pp. 2–8.

    Google Scholar 

  15. N. Nakanishi, Y. Kato, T. Nozaki, and T. Emi:Tetsu-to- Hagané, 1980, vol. 66 (9), p. 1307.

    CAS  Google Scholar 

  16. M. Hirasawa, K. Mori, M. Sano, A. Hatanaka, Y. Shimatani, and Y. Okazaki:Trans. Iron Steel Inst. Jpn., 1987, vol. 27, pp. 277–82.

    CAS  Google Scholar 

  17. M. Hirasawa, K. Mori, M. Sano, Y. Shimatani, and Y. Okazaki:Trans. Iron Steel Inst. Jpn., 1987, vol. 27, pp. 283–90.,

    CAS  Google Scholar 

  18. J.K. Brimacombe and F.D. Richardson:Trans. Inst. Min. Met., 1973, vol. 82, p. 63.

    Google Scholar 

  19. R.E. Johstone and M.E. Thring:Pilot Plants, Models, and Scale-Up Methods in Chemical Engineering, McGraw-Hill Book Co., Inc., New York, NY, 1957, p. 234.

    Google Scholar 

  20. Zuohua Lin: Ph.D. Dissertation, McGill University, Montreal.

  21. J.F. Davidson and B.O.G. SchulenTrans. Inst. Chem. Eng., 1960, vol. 38, pp. 335–42.

    CAS  Google Scholar 

  22. Y. Ogawa, H. Katayama, H. Hirata, N. Tokumitsu, and M. Yamauchi:ISIJ Int., 1992, vol. 32 (1), pp. 87–94.

    CAS  Google Scholar 

  23. C. Tian: Internal Report, McGill Metals Processing Centre, McGill University, Montreal, 1991.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Formerly Graduate Student, Department of Mining and Metallurgical Engineering, McGill University,

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lin, Z., Guthrie, R.I.L. Modeling of metallurgical emulsions. Metall Mater Trans B 25, 855–864 (1994). https://doi.org/10.1007/BF02662767

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02662767

Keywords

Navigation