Skip to main content
Log in

Keyhole formation

  • Published:
Metallurgical Transactions B Aims and scope Submit manuscript

Abstract

The size and temperature of the “keyhole” and melt pool on the top surface of a metal plate being welded with a keyhole have been calculated, based on the power loss resulting from evaporation of an element in the chemistry of the plate and a minimum power density required to produce a keyhole. The evaporative power loss is set equal to the Gaussian power density which is used to represent the laser beam. The result is a temperature distribution across the keyhole. The results indicate that peak powers below the minimum peak power density yield temperatures that are indicative of melting only; peak powers equal to a minimum power density yield temperatures that reach the evaporation temperature of the element; and peak powers greater than the minimum power density yield temperatures greater than the evaporation temperature of the element. The results will be compared to some visual observations of the laser melt pool.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. The Physics of Welding, 2nd ed., J.F. Lancaster, ed., Pergamon Press, New York, NY, 1986.

    Google Scholar 

  2. P.E. Denney and E.A. Metzbower:Proc ICALEO ’91, San Jose, CA, Nov. 1991.

    Google Scholar 

  3. Smithells Metal Reference Book, 6th ed., Butterworth’s, London, pp. 14-6–14-8.

  4. R. Hultgren, P.D. Desai, D.T. Hawkins, M. Gleisser, and K.K. Kelley:Selected Properties of Binary Alloys, ASM INTERNATIONAL, Metals Park, OH, 1973.

    Google Scholar 

  5. Gerd Herziger:The Industrial Laser Annual Handbook, 1986 ed., D. Belforte and M. Levitt, eds., Pennwell Books, Tulsa, OK, 1986, pp. 108–15.

    Google Scholar 

  6. E. Beyer, K. Behler, K. Hoffmann, and J. Berkmanns:Usertechnik, 1991, vol. 133, pp. 82–86.

    CAS  Google Scholar 

  7. Welding Handbook, 8th ed., vol. 2,Welding Processes, American Welding Society, Miami, FL, 1991, p. 727.

  8. J.W. Elmer, W.H. Giedt, and T.W. Eagar:Weld. J., 1990, vol. 69, pp. 167s-176s.

    Google Scholar 

  9. A. Block-Bolten and T.W. Eagar:Trends in Welding Research in the United States, S.A. David, ed., ASM INTERNATIONAL, Metals Park, OH, 1982, pp. 53–73.

    Google Scholar 

  10. A. Block-Bolten and T.W. Eagar:Metall. Trans. B., 1984, vol. 15B, pp. 461–69.

    CAS  Google Scholar 

  11. Scientific Foundations of Vacuum Technique, 2nd ed., S. Dushman and J.M. Laferty, eds., John Wiley, New York, NY, 1962, pp. 691–737.

    Google Scholar 

  12. D.A. Schauer, W.H. Giedt, and S.M. Shintaky:Weld. J., 1978, vol. 57, pp. 127s-133s.

    Google Scholar 

  13. D.T. Swift-Hook and A.E.F. Gick:Weld. J., 1973, vol. 52, pp. 492s-499s.

    Google Scholar 

  14. E.A. Metzbower:J. Laser App., 1989, vol. 1, pp. 9–15.

    Google Scholar 

  15. Y. Arata, M. Tomie, N. Abe, and Xiang-Yu Yao:Trans JWRI, 1987, vol. 16, pp. 13–16.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Metzbower, E.A. Keyhole formation. Metall Trans B 24, 875–880 (1993). https://doi.org/10.1007/BF02663148

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02663148

Keywords

Navigation