Skip to main content
Log in

Modeling of the incorporation of ceramic participates in metallic droplets during spray atomization and coinjection

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

In the present investigation, a theoretical model was developed to study the penetration behavior of ceramic particulates into metallic droplets during spray atomization and coinjection. In formulating the penetration problem, a force balance approach was adopted that considers the variations of both surface-tension resistance and fluid drag during the penetration processes. Using this model, the factors that affect the penetration behavior of ceramic particulates into Al droplets were systematically discussed. These include size, morphology, and density of ceramic paniculate; wetting angle between ceramic and liquid Al; and fraction of solid contained in the semiliquid droplets. It was found that the critical velocity required for penetration increased with increasing wetting angle and fraction of solid but decreased with increasing particulate density. The penetration ability of various ceramic particulates was compared. It was found that the penetration ability of ceramic particulates that are normally encountered in Albased metal matrix composites (MMCs) decreases in the following sequence: TiB2, Al2O3, SiC, and graphite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. P.K. Rohatgi:Adv. Mater. Processes, 1990, vol. 137 (2), pp. 39–44.

    Google Scholar 

  2. F.P. Kehoe and G.A. Chadwick:Mater. Sci. Eng., 1991, A135, pp. 209–12.

    CAS  Google Scholar 

  3. E.M. Klier, A. Mortensen, and L. Edvinsson:J. Mater. Sci., 1991, vol. 26, pp. 2519–26.

    Article  CAS  Google Scholar 

  4. Q.O. Li, D.C. Dunand, A. Mortensen, and J.A. Cornie:Metall. Trans. A, 1991, vol. 22A, pp. 1126–28.

    CAS  Google Scholar 

  5. T.W. Chou, A. Kelly, and A. Okura:Composites, 1985, vol. 16, pp. 187–94.

    Article  CAS  Google Scholar 

  6. S.G. Fishman:J. Met., 1986, vol. 38 (3), pp. 26–27.

    Google Scholar 

  7. Y. Flom and R.J. Arsenault:Mater. Sci. Eng., 1986, vol. 77, pp. 191–97.

    Article  CAS  Google Scholar 

  8. A.H.M. Howes:J. Met., 1986, vol. 38 (3), pp. 28–29.

    Google Scholar 

  9. A. Mortensen, M.N. Gungor, J.A. Cornie, and M.C. Flemings:J. Met., 1986, vol. 38 (3), pp. 30–35.

    CAS  Google Scholar 

  10. A. Mortensen, J.A. Comie, and M.C. Flemings:J. Met., 1988, vol. 40 (2), pp. 12–19.

    CAS  Google Scholar 

  11. I.A. Ibrahim, F.A. Mohamed, and E.J. Lavernia:J. Mater. Sci., 1991, vol. 26, pp. 1137–56.

    Article  CAS  Google Scholar 

  12. P.K. Rohatgi, R. Asthana, and S. Das:Int. Met. Rev., 1986, vol. 31, pp. 115–39.

    CAS  Google Scholar 

  13. A. Mortensen: inFabrication of Paniculate Reinforced Metal Composites, Proc. Conf., Montreal, Sept. 1990, ASM INTERNATIONAL, Metals Park, OH, 1990, pp. 217–33.

    Google Scholar 

  14. M. Gupta, F. Mohamed, and E. Lavernia:Metall. Trans. A., 1992, vol. 23A, pp. 831–43.

    CAS  Google Scholar 

  15. X. Liang, J.C. Earthman, and E.J. Lavernia:Acta Metall. Mater., 1992, vol. 40, pp. 3003–16.

    Article  CAS  Google Scholar 

  16. Y. Wu and E.J. Lavernia:Metall. Trans. A, 1992, vol. 23A, pp. 2923–37.

    CAS  Google Scholar 

  17. A.S. Kacar, F. Rana, and D.M. Stefanescu:Mater. Sci. Eng., 1991, A135, pp. 95–100.

    CAS  Google Scholar 

  18. P.K. Rohatgi, R. Asthana, R.N. Yadav, and S. Ray:Metall. Trans. A, 1990, vol. 21A, pp. 2073–82.

    CAS  Google Scholar 

  19. Y. Wu: Ph.D. Dissertation, University of California, Irvine, CA, 1994.

    Google Scholar 

  20. R.J. Perez: Master’s Thesis, University of California, Irvine, CA, 1993.

    Google Scholar 

  21. E.J. Lavernia:Int. J. Rapid. Solid., 1989, vol. 5, pp. 47–85.

    CAS  Google Scholar 

  22. T. Young:Trans. R. Soc., 1805, vol. 95, pp. 65–73.

    Article  Google Scholar 

  23. G.H. Geiger and D.R. Poirier:Transport Phenomena in Metallurgy, Addison-Wesley Publishing Co., Reading, MA, 1973, pp. 36–110.

    Google Scholar 

  24. H. Liu: Ph.D. Dissertation, University of Bremen, Bremen, FRG, 1990.

    Google Scholar 

  25. T.Z. Kattamis and T.J. Piccone:Mater. Sci. Eng., 1991, A 131, pp. 265–72.

    Google Scholar 

  26. X.A. Liao and Y.X. Liu:Light Metals 1990, Proc. Conf., Anaheim, CA, Feb. 1990, TMS, Warrendale, PA, 1990, pp. 409–12.

    Google Scholar 

  27. E.A. Brandes:Smithells Metals Reference Book, Butterworth & Co Ltd.. Sevenoaks, Kent, United Kingdom, 1983, pp. 14.7–14.8.

    Google Scholar 

  28. J. Shackelford and W. Alexander:The CRC Materials Science and Engineering Handbook, CRC Press, Boca Raton, FL, 1992, pp. 436–38.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, Y., Zhang, J. & Lavernia, E.J. Modeling of the incorporation of ceramic participates in metallic droplets during spray atomization and coinjection. Metall Mater Trans B 25, 135–147 (1994). https://doi.org/10.1007/BF02663187

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02663187

Keywords

Navigation