Skip to main content
Log in

Thermomechanical fatigue, oxidation, and creep: Part i. Damage mechanisms

  • Published:
Metallurgical Transactions A Aims and scope Submit manuscript

Abstract

Isothermal fatigue tests and both out-of-phase and in-phase thermomechanical fatigue tests were performed in air and in helium atmospheres. A wide range of temperatures from 20 ‡C to 700 ‡C was considered in these tests on 1070 steel specimens. A procedure for inert atmosphere testing using encapsulated specimens is described. Results indicate that the fatigue lives are 2 to 12 times greater in helium than in air. Interrupted tests were performed to characterize the pro-gression of damage in the material. Results indicate that oxidation-induced crack nucleation and crack growth are detrimental at high temperatures for isothermal and out-of-phase thermome-chanical fatigue tests. In these tests, transgranular cracking is observed. However, creep-induced intergranular cracking is the dominant damage mechanism during in-phase thermomechanical fatigue tests.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. C.E. Jaske: ASTM STP 612, D.A. Spera and D.F. Mowbray, eds., 1976, pp. 170–98.

  2. K.D. Sheffler: ASTM STP 612, D.A. Spera and D.F. Mowbray, eds., 1976, pp. 214–26.

  3. M.L. Karasek: Materials Engineering-Mechanical Behavior, Report No. 132, College of Engineering, University of Illinois at Urbana-Champaign, Aug. 1986.

  4. R.S. Nelson, J.F. Schoendorf, and L.S. Lin:Creep Fatigue Life Prediction for Engine Hot Section Materials (Isotropic)-Interim Report, NASA Contractor Report 179550, Dec. 1986.

  5. S. Majumdar:Thermal Stress, Material Deformation, and Thermo- Mechanical Fatigue, H. Sehitoglu and S.Y. Zamrik, eds., ASME, New York, NY, 1987, PVP-vol. 123, pp. 31–36.

    Google Scholar 

  6. Gary R. Halford: inThermal Stresses II, R.B. Hetnarski, ed., 1987, pp. 330–428.

  7. J. Gayda, T.P. Gabb, R.V. Miner, and G.R. Halford:Bithermal Low-Cycle Fatigue Behavior of a NiCoCrAJY-Coated Single Crystal Superalloy, NASA TM-89831, 1987.

  8. Stephen D. Antoloyich, R. Baur, and S. Liu:Superalloys 1980, J.K. Tien, S.T. Wlodek, H. Morrow III, M. Gell, and G.E. Maurer, eds., ASM, Metals Park, OH, 1980, pp. 605–13.

    Google Scholar 

  9. K.D. Challenger, A.K. Miller, and C.R. Brinkman:J. Eng. Mater. Tech., Trans. ASME, 1981, vol. 103 (1), pp. 7–14.

    CAS  Google Scholar 

  10. J. Bressers, U. Schusser, and B. Ilschner:Low Cycle Fatigue and Elasto-Plastic Behaviour of Materials, 2nd Int. Conf. on Low Cycle Fatigue and Elasto-Plastic Behaviour of Materials, Munich, Germany, Elsevier Applied Science Publishers Ltd., Barking, U.K., 1987, pp. 365–70.

    Google Scholar 

  11. S. Floreen and R.H. Kane:Fatigue of Engineering Materials and Structures, 1980, vol. 2, pp. 401–12.

    Article  Google Scholar 

  12. H.W. Liu and Y. Oshida:Theoretical and Applied Fracture Me- chanics, 1986, vol. 6, pp. 85–94.

    Article  Google Scholar 

  13. J. Reuchet and L. Rémy.Metall. Trans. A, 1983, vol. 14A, pp. 141–49.

    Google Scholar 

  14. S. Majumdar and P.S. Maiya:J. Eng. Mater, and Tech., 1980, vol. 102, pp. 159–67.

    CAS  Google Scholar 

  15. B. Kirkwood and J.R. Weertman:Micro and Macro Mechanics of Crack Growth, K. SActananda, B.B. Rath, and D.J. Michel, eds., TMS-AIME, 1982, pp. 199–212.

  16. John Wareing:Metall. Trans. A, 1977, vol. 8A, pp. 711–21.

    CAS  Google Scholar 

  17. S. Baik and R. Raj:Metall. Trans. A, 1982, vol. 13A, pp. 1207–14.

    Google Scholar 

  18. B.K. Min and R. Raj:Acta Metall., 1978, vol. 26, pp. 1007–22.

    Article  CAS  Google Scholar 

  19. B. Tomkins: inCreep and Fatigue in High Temperature Alloys, J. Bressers, ed., 1981, pp. 111–43.

  20. J.K. Tien, S.V. Nair, and V.C. Nardone: inFlow and Fracture at Elevated Temperatures, Rishi Raj, ed., ASM, Metals Park, OH, 1985, pp. 179–213.

    Google Scholar 

  21. D. Bruce and P. Hancock:J. Inst. of Metals, 1969, vol. 97, pp. 148–55.

    CAS  Google Scholar 

  22. J.K. Tien and J.M. Davidson:Stress Effects and the Oxida- tion of Metals, John V. Cathcart, ed., TMS-AIME, 1974, pp. 200–19.

  23. H. Riedel:Met. Sci., 1982, vol. 16 (12), pp. 569–74.

    Article  Google Scholar 

  24. Huseyin Sehitoglu and M. Karasek:J. Eng. Mat. Tech., Trans. ASME, 1986, vol. 108 (4), pp. 192–98.

    CAS  Google Scholar 

  25. N.B. Pilling and R.E. Bedworth:J. Inst. of Metals, 1923, vol. 29, pp. 529–82.

    Google Scholar 

  26. J.E. Forrest and P.S. Bell:Corrosion and Mechanical Stress at High Temperatures, V. Guttmann and M. Merz, eds., Applied Science Publishers Ltd., London, 1981, pp. 339–58.

    Google Scholar 

  27. A. Atkinson:Corros. Sci., 1982, vol. 22 (4), pp. 347–57.

    Article  CAS  Google Scholar 

  28. M. Schutze:Oxid. Met., 1985, vol. 24 (3/4), pp. 199–232.

    Article  Google Scholar 

  29. D. Bruce and P. Hancock :J. Iron Steel Inst., Nov. 1970, pp. 1021–24.

  30. M.I. Manning:Corros. Sci., 1981, vol. 21 (4), pp. 301–16.

    Article  CAS  Google Scholar 

  31. L.F. Cffin, Jr.:Metall. Trans., 1972, vol. 3, pp. 1777–88.

    Google Scholar 

  32. R.P. Skelton:Low-Cycle Fatigue and Life Prediction, ASTM STP 770, C. Amzallag, B.N. Leis, and P. Rabbe, eds., 1982, pp. 337–81.

  33. R.H. Cook and R.P. Skelton:Int. Metall. Rev., 1974, vol. 19 (12), pp. 199–222.

    CAS  Google Scholar 

  34. C.H. Wells, P.S. Follansbee, and R.R. Dils: Stress Effects and the Oxidation of Metals, John V. Cathcart, ed., TMS-AIME, 1974, pp. 220–44.

  35. G. Ward, B.S. Hockenhull, and P. Hancock:Metall. Trans., 1974, vol. 5, pp. 1451–55.

    Article  CAS  Google Scholar 

  36. D.S. Wood, G. Slattery, J. Wynn, D. Connaughton, and M.E. Lambert:The Influence of Environment on Fatigue, The Insti- tution of Mechanical Engineers, 1977, pp. 11–20.

  37. P.S. Maiya:Mater. Sci. and Eng., 1981, vol. 47, pp. 13–21.

    Article  CAS  Google Scholar 

  38. D.J. Michel and H.H. Smith:Res Mechanica, 1985, vol. 14, pp. 271–85.

    CAS  Google Scholar 

  39. R.P. Skelton:Mater. Sci. and Eng., 1978, vol. 35, pp. 287–98.

    Article  CAS  Google Scholar 

  40. C.R. Brinkman:Int. Metals Rev., 1985, vol. 30 (5), pp. 235–58.

    CAS  Google Scholar 

  41. E. Renner, H. Vehoff, H. Riedel, and P. Neumann: Low Cycle Fatigue and Elasto-Plastic Behaviour of Materials, 2nd Int. Conf. on Low Cycle Fatigue and Elasto-Plastic Behaviour of Materials, Munich, Germany, 1987, pp. 277–83.

  42. H. Sehitoglu, and J.D. Morrow: inThermal and Environ- mental Effects in Fatigue: Research-Design Interface, C.E. Jaske, S.J. Hudak, Jr., and ME. Mayfield, eds., 1983, PVP-vol. 71, pp. 93–109.

  43. Huseyin Sehitoglu:J. Eng. Mater. Tech., Trans. ASME, 1985, vol. 107 (7), pp. 221–26.

    Article  Google Scholar 

  44. Huseyin Sehitoglu:Engineering Fracture Mechanics, 1987, vol. 26 (4), pp. 475–89.

    Article  Google Scholar 

  45. L.F. Coffin:Proc. Int. Symp. on Low-Cycle Fatigue Strength and Elasto-Plastic Behavior of Materials, 1979, pp. 9–24.

  46. C. Levaillant and A. Pineau:Low-Cycle Fatigue and Life Prediction, ASTM STP 770, C. Amzallag, B.N. Leis, and P. Rabbe, eds., 1982, pp. 169–93.

  47. Ashok Saxena and John L. Bassani:Fracture: Interactions of Mi- crostructure , Mechanisms and Mechanics, Joseph M. Wells and John D. Landes, eds., TMS-AIME, 1984, pp. 357–83.

  48. R.P. Skelton and J.I. Bucklow:Met. Sci., 1978, vol. 12(2), pp. 64–70.

    CAS  Google Scholar 

  49. L. Berchtold, H.G. Sockel, and B. Ilschner:Behaviour of High Temperature Alloys in Aggressive Environments, 1979, pp. 927–37.

  50. M. Karasek, H. Sehitoglu, and D. Slavik: ASTM STP 942, 1988, pp. 184–205.

  51. Dennis A. Boismier: M.S. Thesis, University of Illinois at Urbana- Champaign, Urbana, IL, 1988.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Neu, R.W., Sehitoglu, H. Thermomechanical fatigue, oxidation, and creep: Part i. Damage mechanisms. Metall Trans A 20, 1755–1767 (1989). https://doi.org/10.1007/BF02663207

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02663207

Keywords

Navigation