Skip to main content
Log in

Thermomechanical fatigue, oxidation, and Creep: Part II. Life prediction

  • Published:
Metallurgical Transactions A Aims and scope Submit manuscript

Abstract

A life prediction model is developed for crack nucleation and early crack growth based on fatigue, environment (oxidation), and creep damage. The model handles different strain-temperature phasings(i.e., in-phase and out-of-phase thermomechanical fatigue, isothermal fatigue, and others, including nonproportional phasings). Fatigue life predictions compare favorably with experiments in 1070 steel for a wide range of test conditions and strain-temperature phasings. An oxide growth (oxide damage) model is based on the repeated microrupture process of oxide observed from microscopic measurements. A creep damage expression, which is stress-based, is coupled with a unified constitutive equation. A set of interrupted tests was performed to provide valuable damage progression information. Tests were performed in air and in helium atmospheres to isolate creep damage from oxidation damage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R.S. Nelson, J.F. Schoendorf, and L.S. Lin:Creep Fatigue Life Prediction for Engine Hot Section Materials (Isotropic)-Interim Report, NASA CR-179550, Dec. 1986.

  2. L.F. Coffin, Jr.:Fatigue at Elevated Temperatures, ASTM STP 520, 1973, pp. 524.

  3. K.D. Challenger, A.K. Miller, and R.L. Langdon:J. Materials for Energy Systems, 1981, vol. 3 (6), pp. 51–61.

    CAS  Google Scholar 

  4. S.D. Antolovich, R. Baur, and S. Liu:Superalloys 1980, 1980, pp. 605–13.

  5. S.D. Antolovich, S. Liu, and R. Baur:Metall. Trans. A, 1981, vol. 12A, pp. 473–81.

    Google Scholar 

  6. J. Reuchet and L. Rémy:Metalt. Trans. A, 1983, vol. 14A, pp. 141–49.

    Article  Google Scholar 

  7. R.P. Skelton and J.I. Bucklow:Met. Sci., 1978, vol. 12 (2), pp. 64–70.

    Google Scholar 

  8. A. Saxena and J.L. Bassani:Proc. AIME on Fracture: Inter- actions of Microstructure, Mechanisms, and Mechanics, J.M. Wells and J.D. Landes, eds., 1984, pp. 357–13.

  9. H.W. Liu and Y. Oshida:Theoretical and Applied Fracture Me- chanics, 1986, vol. 6, pp. 85–94.

    Article  Google Scholar 

  10. L.F. Coffin, Jr.:Metall. Trans., 1972, vol. 3, pp. 1777–88.

    CAS  Google Scholar 

  11. U.R. Skelton:Mater. Sci. and Eng., 1978, vol. 35 (2), pp. 287–98.

    Article  CAS  Google Scholar 

  12. S. Floreen and R.H. Kane:Fatigue of Engineering Materials and Structures, 1980, vol. 2, pp. 401–12.

    Article  Google Scholar 

  13. R.P. Skelton:Low-Cycle Fatigue and Life Prediction, ASTM STP 770, 1982, pp. 337–81.

  14. E. Renner, H. Vehoff, H. Riedel, and P. Neumann:Int. Conf. on Low Cycle Fatigue and Elasto-Plastic Behaviour of Materials, 2nd ed., Munich, Germany, 1987, pp. 277–83.

  15. J. Bressers, U. Schusser, and B. Ilschner:Int. Conf. on Low Cycle Fatigue and Elasto-Plastic Behaviour of Materials, 2nd ed., Munich, Germany, 1987, pp. 365–70.

  16. M. Karasek, H. Sehitoglu, and D. Slavik:Low Cycle Fatigue—Directions for the Future, Proc. ASTM Conf., Lake George, NY, Oct. 1985.

  17. G.R. Halford and J.F. Saltsman:Proc. of ASME Conf. on Ther- mal Stress, Material Deformation, and Thermo-Mechanical Fa- tigue, H. Sehitoglu and S.Y. Zamrik, eds., ASME, New York, NY, 1987, PVP-vol. 123, pp. 9–21.

    Google Scholar 

  18. G.R. Halford and S.S. Manson:Thermal Fatigue of Materials and Components, ASTM STP 612, D. Spera and D. Mowbray, eds., 1976, pp. 239–54.

  19. ASME Boiler and Pressure Vessel Code, Case N-47-23, Class 1 Components in Elevated Temperature Service, Section III, Division 1, 1986.

  20. T. Bui-Quoc and A. Biron:3rd Int. Conf. on Pressure Vessel Technology, Part II, ASME, New York, NY, 1977, pp. 853–60.

    Google Scholar 

  21. M. Bernard-Connolly, A. Biron, and T. Bui-Quoc:Trans. CSME, 1978-79, vol. 5 (3), pp. 173–78.

    Google Scholar 

  22. J. Lemaitre and A. Plumtree:J. Eng. Mater. Tech., Trans. ASME, 1979, vol. 101 (7), pp. 284–92.

    Article  CAS  Google Scholar 

  23. A. Plumtree:Can. Metall. Quart., 1979, vol. 18, pp. 197–205.

    CAS  Google Scholar 

  24. T. Bui-Quoc and R. Gomuc:ASME Int. Conf. on Advances in Life Prediction Methods, D.A. Woodford and J.R. Whitehead, eds., 1983, pp. 105–13.

  25. J.L. Chaboche: inEngineering Approaches to High Temperature Design, B. Wilshire and D.R.J. Owen, eds., 1983, vol. 2, pp. 177–235.

  26. S. Majumdar and P.S. Maiya:J. Eng. Mater. Tech., 1980, vol. 102 (1), pp. 159–67.

    Article  CAS  Google Scholar 

  27. S. Majumdar:Proc. ASME Conf. on Thermal Stress, Material Deformation and Thermo-Mechanical Fatigue, H. Sehitoglu and S.Y. Zamrik, eds., ASME, New York, NY, 1987, PVP-vol. 123, pp. 31–36.

    Google Scholar 

  28. J. Wareing:Metall. Trans. A, 1977, vol. 8A, pp. 711–21.

    CAS  Google Scholar 

  29. B. Tomkins:Creep and Fatigue in High Temperature Alloys, J. Bressers, ed., Applied Science Publishers, London, 1981, pp. 111–43.

    Google Scholar 

  30. C.E. Jaske:ASME Int. Conf. on Advances in Life Prediction Methods, 1983, pp. 93–103.

  31. J.K. Tien, S.V. Nair, and V.C. Nardone: inFlow and Fracture at Elevated Temperatures, 1985, pp. 179–213.

  32. C. Levaillant and A. Pineau:Low-Cycle Fatigue and Life Pre- diction, ASTM STP 770, 1982, pp. 169–93.

  33. K.-T. Rie and R.-M. Schmidt:Int. Conf. on Low Cycle Fatigue and Elasto-Plastic Behaviour of Materials, 2nd ed., Munich, Germany, 1987, pp. 223–28.

  34. B.K. Min and R. Raj:Acta Metall., 1978, vol. 26, pp. 1007–22.

    Article  CAS  Google Scholar 

  35. S. Baik and R. Raj:Metall. Trans. A, 1982, vol. 13A, pp. 1207–14.

    Google Scholar 

  36. S. Baik and R. Raj:Metall. Trans. A, 1982, vol. 13A, pp. 1215–21.

    Google Scholar 

  37. J. Morrow:Internal Friction, Damping and Cyclic Plasticity, ASTM STP 378, 1965, pp. 45–87.

  38. M.L. Karasek:Materials Engineering-Mechanical Behavior, Re- port No. 132, College of Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, Aug. 1986.

    Google Scholar 

  39. H. Sehitoglu and M. Karasek:J. Eng. Mater. Tech., 1986, vol. 108 (4), pp. 192–98.

    CAS  Google Scholar 

  40. G. Ward, B.S. Hockenhull, and P. Hancock:Metall. Trans., 1974, vol. 5, pp. 1451–55.

    Article  CAS  Google Scholar 

  41. J.E. Forrest and P.S. Bell:Corrosion and Mechanical Stress at High Temperatures, V. Guttmann and M Merz eds 1981 pp. 339–58.

  42. N. Birks and G.H. Meier:Introduction to High Temperature Oxidation of Metals, Edward Arnold Publishers, London, 1983.

    Google Scholar 

  43. A.S. Argon, I. Chen, and C. Lau:Creep-Fatigue-Environment Interactions, R.M. Pelloux and N.S. Stoloff, eds., TMS-AIME 1980, pp. 46–85.

  44. D. Slavik:Materials Engineering-Mechanical Behavior, Report No. 134, College of Engineering, University of Illinois at Urbana- Champaign, Urbana, IL, Sept. 1986.

    Google Scholar 

  45. D. Slavik and H. Sehitoglu:Proc. ASME Conf. Thermal Stress, Material Deformation, and Thermo-Mechanical Fatigue, H. Sehitoglu and S.Y. Zamrik, eds., ASME, New York, NY 1987, PVP-vol. 123, pp. 65–82.

    Google Scholar 

  46. H. Sehitoglu and J.D. Morrow:Thermal and Environmental Ef- fects in Fatigue: Research-Design Interface, C.E. Jaske, S J Hudak, Jr., and M.E. Mayfield, eds., ASME, New York NY 1983, PVP-vol. 71, pp. 93–109.

    Google Scholar 

  47. H. Sehitoglu:J. Eng. Mater. Tech., 1985 vol 107 (7) pp. 221–26.

    Google Scholar 

  48. Dennis A. Boismier: M.S. Thesis, University of Illinois at Urbana- Champaign, Urbana, IL, 1988.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Neu, R.W., Sehitoglu, H. Thermomechanical fatigue, oxidation, and Creep: Part II. Life prediction. Metall Trans A 20, 1769–1783 (1989). https://doi.org/10.1007/BF02663208

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02663208

Keywords

Navigation