Skip to main content
Log in

The selective chlorination of iron from llmenite ore by CO-Cl2 mixtures: Part II. mathematical modeling of the fluidized-bed process

  • Published:
Metallurgical Transactions B Aims and scope Submit manuscript

Abstract

By modifying a two-phase fluidized-bed model, two mathematical models which describe the behavior of gas and solid movement and reactions in a fluidized bed as well as interpret the experimental results for the selective chlorination of iron were formulated. One model is based on treating the bubble and emulsion phases as separate continuum phases with mass exchange between them, resulting in differential governing equations. The other is based on the compartmentalization of the fluidized bed into a network of perfectly mixed reactors. Predictions from these models produced satisfactory agreement compared with experimental results. The effects of important variables affecting the bed performance—superficial gas velocity, exchange rate between the phases, and reaction rate constant—were tested.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

a :

specific surface (particle surface area/volume of bed, m−1) = 6(1 - εfϕ sdp

Ao :

cross-sectional area of bed (m2)

A w :

wall area of the containing vessel (m{sr2})

C g,j :

gas concentration in phasej in the bed (mol·m−3)

Cpg,in :

mean heat capacity of inlet gases (J kg−1 K−1)

Cpg,out :

mean heat capacity of outlet gases (J kg−1 K−1)

C ps :

heat capacity of unreacted solid at any time (J kg−1K⟷1

d b :

bubble diameter as a function of bed height (m)[22] =d bm−{dbm−dbo)} exp [-(0.3h/ D o)], whered bm = 1.635[Ao(uo − umf)]0.4andd bo= 0.376(u ou mf)2

dp :

particle diameter (m)

D o :

bed diameter (m)

D 1m :

pseudobinary diffusivity for species 1 in a multicomponent gas mixture[241] = (1 −X 1)/[Σ nj=2 (Xj/D1j)];D 12= 18.583[T3(1/M1 − 1/M1)]0.5/pσ 212 Σ12 m2 s−1), where σ is a parameter in the Lennard-Jones potential function, and Σ is a slowly varying function of kT/ε

f i,j :

volumetric fraction ofi in phasej (Figure 2); since the cloud becomes thinner with increasing bubble velocity, the cloud phase is neglected in the flow rate used

g :

standard acceleration of gravity (m.s−2)

Gin :

mass rate of inlet gases(=u oρgkg m−2 s−1)

Gout :

mass rate of outlet gases which can be calculated from the conversion and stoichiometric equation (kg m−2s−1)

h :

vertical distance from the bottom of the fluidized bed (m)

h c :

height of a compartment (m)

h p :

overall heat transfer coefficient (J s−1 m−2 K−1);[5]h p,app=(k g/dp)[1/(1 − εf)] [γNut sdp 26kg)Hbe], where Nut = 2 + 0.6 Pr1/3 Re1/2 andH be=4.5(umfρgCpg/ db) + 55[(kgρgCpg)0.5/db 1.25(J m−3s−1K−1)

h w :

heat transfer coefficient between the bed and wall;h w = (kg/dp) {1 + exp[-0.44(H f/dt) (Cpg/Cps)]} (1 − εf) (Cpsρs/Cpgρg) ψ (J m−2 s−1K−1), where ψ is a dimensionless quantity obtained from the figure of the correlation for heat transfer at container walls[26]

H f :

fluidized bed height (m)

ΔH r :

heat of reaction (J kg−1)

k :

thermal conductivity = 8.322 × 10−5 (⇏T/M/σ 2Σk)(Jm−1s−1K−1) andk mix=

Kbe :

interchange coefficient for gas between bubble and emulsion phases based on bubble volume (s−1);[5] ⇏/Kbe = 1/Kbc + 1/Kce, whereK bc= 4.5(umf/db) + 5.85(D0.5g0.25/ d 1.25b ) and kce =6.78(εmfDub/d 3b 0.5

Ks :

interchange coefficient for solid between bubble and emulsion based on bubble volume (s−1);[4] [3(1 − εmf)/(l − δε mf](u mf/db) (1 + α)δ M molecular weight (g.mol−1)

p :

pressure (kPa) Pr Prandtl number (−)

r i,j :

the volumetric reaction rate ofi in phasej based on the following stoichiometric equation: Fe2O3 + 3CO + 3C12 = 2FeCl3 + 3CO2

r s :

volumetric reaction rate(dX/dt, s−1) R the universal gas constant Re Reynolds number (−)

t :

time (s)

T :

temperature (K)

T g,in :

inlet gas temperature (K) Tg,out exit gas temperature (K)

T ref :

reference temperature (K)

u b :

bubble rising velocity (m.s1) =u o− umf + 2.226

d) b 0.5ue :

gas velocity in emulsion (m.s−1) = (umfmf) − [αu o/(1 − δ − α δ) − αumf]

u mf :

minimum fluidization velocity (m.s−1) given by[5] umf =(μ/d) pPg[33.72 + 0.0408 {dρg(ρ) s − ρg)g/μ2)]0.5 −} 33.7

u o :

superficial linear gas velocity (m.s1)

u s :

velocity of solid in the emulsion (m1) =αδu b(1 − δ− αδS)

W o :

weight of iron oxide solid (kg)

W p :

weight of unreacted solid at any time (kg)

x :

mole fraction (−)

X s,j :

solid conversion in phasej (−)

y s,j :

1 − xs,j

α :

volumetric ratio of wake to bubble (−)

γb :

ratio of the volume of solids dispersed in bubbles to the volume of bubbles in the bed (−) ° volume fraction of bubbles in the bed (−) =(u o − umf)/ub

ε mf :

voidage at the minimum fluidization (−)

η h :

effectiveness factor for heat transfer (−) λ pore-blocking constant (−)

μ :

viscosity = 2.6693 × 10−4 √MT/σ2Σμ (kg m−1s−1) and μmix = Σ ni=1

ρ :

density (kg.m−3)

π ij :

(1/√8) [1 +(M i/Mj)]− 0.5[1 + (μij)0.5 (Mj/Mi)+0.25]2 ϕs sphericity (−) Subscripts

b :

bubble phase

e :

emulsion phase

g :

gas phases

mf :

minimum fluidization

s :

solid

References

  1. R. Powell:Titanium Oxide and Titanium Tetrachloride, Noyes Development Co., Park Ridge, NJ, 1968, pp. 1–6.

    Google Scholar 

  2. R.D. Toomey and H.F. Johnstone:Chem. Eng. Prog., 1952, vol. 48, pp. 220–26.

    CAS  Google Scholar 

  3. J.F. Davidson and D. Harrison:Fluidized Particles, Cambridge University Press, Cambridge, U.K., 1963, pp. 302-51.

    Google Scholar 

  4. B.A. Partridge and P.N. Rowe:Trans. Inst. Chem. Eng., 1966, vol. 44, pp. 335–48.

    CAS  Google Scholar 

  5. D. Kunii and O. Levenspiel:Fluidization Engineering, John Wiley & Sons, New York, NY, 1969, pp. 66–73, 178-85 and 219-21.

    Google Scholar 

  6. K. Kato and C.Y. Wen:Chem. Eng. Sci., 1969, vol. 24, pp. 1351–69.

    Article  CAS  Google Scholar 

  7. T. Chiba and H. Kobayashi:Proc. Int. Conf. on Fluidization and its Applications, 1973, pp. 468-80.

  8. W.P.M. Van Swaaij and F.J. Zuiderweg:Chem. React. Eng., Proc. Eur. Symp. 5th, Pergamon Press, Oxford, U.K., 1972, vol. B9, pp. 25–36.

    Google Scholar 

  9. J. Werther:Ger. Chem. Eng., 1978, vol. 1, pp. 243–51.

    Google Scholar 

  10. P.F. Wace and S.J. Barnett:Trans. Inst. Chem. Eng., 1956, vol. 43, pp. 157–75.

    Google Scholar 

  11. P.N. Rowe and B.A. Partridge:Trans. Inst. Chem. Eng., 1965, vol.43, pp. 271–86.

    Google Scholar 

  12. I.N. Woollard and O.E. Potter:AlChE J., 1968, vol. 14 (3), pp. 388–91.

    Google Scholar 

  13. K. Yoshida and D. Kunii:J. Chem. Eng. Jpn., 1968, vol. 1 (1), pp. 11–16.

    Google Scholar 

  14. S.P. Babu, S. Leipziger, B.S. Lee and S.A. Weil:AIChE Symp. Ser., 1974, vol. 69 (128), pp. 49–57.

    Google Scholar 

  15. W. Bortz:Chem. Ing. Technik., 1952, vol. 24, pp. 60–81.

    Article  Google Scholar 

  16. J. Van Deemter:Proc. Int. Symp. on Fluidization, Netherlands University Press, Amsterdam, 1967.

    Google Scholar 

  17. L.K. Doraiswamy, H.C. Bijawat, and M.V. Kunte:Chem. Eng. Prog., 1959, vol. 55 (10), pp. 80–88.

    Google Scholar 

  18. A.S. Athavale and V.A. Altekar:Ind. Eng. Chem. Process Des. Dev., 1971, vol. 10 (4), pp. 523–30.

    Article  Google Scholar 

  19. A.J. Morris and R.F. Jensen:Metall. Trans. B, 1976, vol. 7B, pp. 89–93.

    Article  CAS  Google Scholar 

  20. C.M. Lakeshmanan, H.E. Hoelescher, and B. Chennakesavan:Chem. Eng. Sci., 1968, vol. 20, pp. 1107–13.

    Article  Google Scholar 

  21. A. Fuwa, E. Kimura, and S. Fukushima:Metall. Trans. B, 1978, vol. 9B, pp. 643–52.

    CAS  Google Scholar 

  22. S. Mori and C.Y. Wen:AIChE J., 1975, vol. 21, pp. 109–15.

    Article  CAS  Google Scholar 

  23. C.R. Wilke:J. Chem. Phys., 1950, vol. 18, pp. 517–19.

    Article  CAS  Google Scholar 

  24. D.F. Fairbanks and C.R. Wilke:Ind. Eng. Chem., 1950, vol. 4 (3), pp. 471–75.

    Article  Google Scholar 

  25. K.I. Rhee and H.Y. Sohn:Metall. Trans. B, 1990, vol. 21B, pp. 321–30.

    CAS  Google Scholar 

  26. L. Wender and G.T. Cooper:AIChE J., 1958, vol. 4, pp. 15–23.

    Article  CAS  Google Scholar 

  27. .J. More, B.S. Garbow and K.E. Hillstrom: Report ANL-80-74, Argonne National Laboratory, Argonne, IL.

  28. J.R. Grace:AIChE Symp. Ser., 1974, vol. 70 (141), pp. 21–26.

    Google Scholar 

  29. P.N. Rowe:Chem. Reaction Eng., ACS Symp. Ser., American Chemical Society, Washington, DC, 1978, no. 65, pp. 436–46.

    Google Scholar 

  30. C. Chavarice and J.R. Grace:Ind. Eng. Chem. Fundam., 1975, vol. 14(2), pp. 75–91.

    Article  Google Scholar 

  31. C.C. Fryer and O.E. Potter:AIChE J., 1975, vol. 22, pp. 38–47.

    Article  Google Scholar 

  32. O.E. Potter:Catal. Rev.-Sci. Eng., 1978, vol. 17 (2), pp. 155–202.

    Article  Google Scholar 

  33. T. Chiba and H. Kobayashi:Chem. Eng. Sci., 1972, vol. 27, pp. 1375–78.

    Google Scholar 

  34. .A.H. Drinkenburg and K. Rieteura:Chem. Eng. Sci., 1972, pp. 1765-74.

Download references

Author information

Authors and Affiliations

Authors

Additional information

Formerly Graduate Student at the Department of Metallurgical Engineering, University of Utah

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rhee, K.I., Sohn, H.Y. The selective chlorination of iron from llmenite ore by CO-Cl2 mixtures: Part II. mathematical modeling of the fluidized-bed process. Metall Trans B 21, 331–340 (1990). https://doi.org/10.1007/BF02664201

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02664201

Keywords

Navigation