Skip to main content
Log in

Fracture process of a low carbon low alloy steel relevant to charpy toughness at ductile-brittle fracture transition region

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The fracture process that determines the Charpy energy at the ductile-brittle transition region was investigated by means of the instrumented Charpy test and fractographic analysis with a low carbon low alloy steel subjected to different control-rolling conditions. The decomposition of a Charpy energy into the energies dissipated in the course of the notch-tip blunting, stable crack growth, and brittle crack propagation is unique irrespective of the testing temperatures and specimen series. Toughness level can be divided into four regions according to the pre-dominating fracture process. The temperature dependence of toughness and effects of the an-isotropy of a specimen originates in the brittle fracture initiation stage rather than the resistance against the notch-tip blunting or stable crack growth. From fractographic examination referring to the stress analyses, it is discussed that the brittle fracture initiation is controlled by the local deformation microstructures in the plastic zone together with the stress field ahead of the notch or the stable crack front.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. J.M. Barsom and S.T. Rolfe:Fracture and Fatigue Control in Structures, Prentice-Hall, Englewood Cliffs, NJ, 1987, p. 467.

    Google Scholar 

  2. British Standard Methods for Crack Opening Displacement Testing, BS-5762, 1979.

  3. Standard Test for JIC, ASTM E-813-87, 1987.

  4. Tentative Recommended Practice for R-Curve Determination, ASTM, Philadelphia, PA, 1978.

  5. R.M. McMeeking:J. Mech. Phys. Solids, 1977, vol. 25, pp. 357–81.

    Article  CAS  Google Scholar 

  6. CF. Shih:J. Mech. Phys. Solids, 1981, vol. 29, pp. 305–26.

    Article  Google Scholar 

  7. W.J. Drugan and Xing-Yu Chen:J. Mech. Phys. Solids, 1989, vol. 37, pp. 1–26.

    Article  Google Scholar 

  8. A. Needleman and V. Tvergaard:Elastic-Plastic Fracture, ASTM STP 803, 1983, pp. I 80-115.

  9. J.M. Barsom and S.T. Rolfe: ASTM STP 466, 1970, pp. 281-302.

  10. J.R. Low:Deformation and Fracture in Solids, Springer-Verlag, Berlin, 1956, p. 50.

    Google Scholar 

  11. E.W. Noble and D. Hull:Phil. Mag., 1965, vol. 12, p. 777.

    Article  CAS  Google Scholar 

  12. C.L. Briant and S.K. Banerji:Int. Met. Rev., 1978, No. 4, pp. 164-98.

  13. M.P. Seah:Proc. R. Soc. London, 1976, vol. 349, pp. 535–54.

    Article  CAS  Google Scholar 

  14. H. Inagaki, K. Kurihara, and I. Kozasu:Tetsu-to-Hagané, 1975, vol. 61, pp. 991–1011.

    CAS  Google Scholar 

  15. D.R. Ireland:Instrumented Impact Testing, ASTM STP 563, 1974, pp. 3-29.

  16. T. Kobayashi, K. Takai, and H. Maniwa:Bull. Jpn. Inst. Met., 1966, vol. 30, p. 700.

    CAS  Google Scholar 

  17. T. Kobayashi, Y. Yamamoto, and M. Murakami:Tetsu-to-Hagané, 1988, vol. 74, pp. 903–09.

    Google Scholar 

  18. A.R. Rosenfield, D.K. Shetty, and A.J. Skidmore:Metall. Trans. A, 1983, vol. 14A, pp. 1934–37.

    CAS  Google Scholar 

  19. A.P. Green and B.B. Hundy:J. Mech. Phys. Solids, 1956, vol. 4, pp. 128–44.

    Article  Google Scholar 

  20. T.R. Wilshaw and P.L. Pratt:J. Mech. Phys. Solids, 1966, vol. 14, pp. 7–19.

    Article  Google Scholar 

  21. D.J. Alexander, J.J. Lewandowski, W.J. Sisak, and A.W. Thompson:J. Mech. Phys. Solids, 1986, vol. 34, pp. 433–54.

    Article  Google Scholar 

  22. T. Lin, A.G. Evans, and R.O. Ritchie:Acta Metall., 1986, vol. 34, pp. 2205–16.

    Article  CAS  Google Scholar 

  23. S. Matsuda, S. Sekiguchi, and H. Kageyama:Testsu-to-Hagané, 1978, vol. 64, pp. 1209–18.

    CAS  Google Scholar 

  24. A.W. Thompson:Metall. Trans. A, 1987, vol. 18A, pp. 1877–86.

    CAS  Google Scholar 

  25. J.W. Bray, K.J. Handerhan, W.M. Garrison, Jr., and A.W. Thompson:Metall. Trans. A, 1992, vol. 23A, pp. 485–96.

    CAS  Google Scholar 

  26. R.O. Ritchie and R.M. Horn:Metall. Trans. A, 1978, vol. 9A, pp. 331–41.

    CAS  Google Scholar 

  27. W.J. Harris, Jr., J.A. Rinebolt, and R. Raring:Weld. J. Res. Suppl., 1951, vol. 30, p. 417.

    Google Scholar 

  28. M. Koide, J. Kikuchi, T. Yagi, and M. Nagumo:Mater. Sci. Eng. A, 1994, vol. 176, pp. 171–75.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Formerly Graduate Student, Department of Materials Science and Engineering, Waseda University

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tani, T., Nagumo, M. Fracture process of a low carbon low alloy steel relevant to charpy toughness at ductile-brittle fracture transition region. Metall Mater Trans A 26, 391–399 (1995). https://doi.org/10.1007/BF02664675

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02664675

Keywords

Navigation