Skip to main content
Log in

A thermodynamic study of digenite solid solution (cu2-δs) at 600 to 1000°c and a statistical thermodynamic critique on general nonstoichiometry

  • Published:
Metallurgical Transactions B Aims and scope Submit manuscript

Abstract

A very accurate experimental method to determine the composition of metal-saturated sulfides has been developed and applied to Cu2-δS. The technique consists of using a high-sensitivity thermobalance which operates in a controlled atmosphere of H2-H2S gas. By this method it was shown that Cu-saturated CuxS is stoichiometric(x= 2.0000 ± 0.0002) between 700 and 1000°C. The free energy of formation for Cu2S was found to be: 2Cu(s) + 1/2 S2(g) = Cu2.0000S(s), ΔG0 = -30,610 + 6.80T (cal/mole). The sulfur partial pressure was determined over nonstoichiometric Cu2-δS for sulfur contents up to 21 pct. From the result, thermodynamic functions such as activity of copper, heats and entropies of solution were calculated as a function of nonstoichiometric composition. It was thermo-dynamically demonstrated that previous models dealing with nonstoichiometric oxides (or sulfides) based on the law of mass action,i.e., δ = const ie 67 01 (or ie 67 02), are inconsis-tent as they fail to satisfy the Gibbs-Duhem relation and also fail to account for the dis-sociation pressure over the stoichiometric composition. To resolve this dilemma, a sta-tistical thermodynamic method of constructing the grand partition function was introduced. Stoichiometry and nonstoichiometry of the Cu2-δS were then explained by postulating an ionic crystal consisting of Cu+, Cu2+, Cu0 and neutral vacancies in the copper sublattice and S2− and neutral vacancies in the sulfur sublattice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. L. S. Darken and R. W. Gurry:J. Amer. Chem. Soc., 1945, vol. 67, p. 1398–412.

    Article  CAS  Google Scholar 

  2. H. Rau:J. Phys. Chem. Solids, 1967, vol. 28, p. 903–16.

    Article  CAS  Google Scholar 

  3. S. Takeuchi and K. Furukawa:Met. Soc. Conf., vol. 7, pp. 245–60, 1961 ; S. Takeuchi and K. Igaki:Sci. Rep. Res. Inst. Tohoku Univ. (Japan), 1952, vol. 4A,no. 2, pp. 164-75.

    CAS  Google Scholar 

  4. M. Hansen and K. Anderko:Constitution of Binary Alloys, McGraw-Hill, New York, 1958, and also R. P. Elliott:Constitution of Binary Alloys, First Sup- plement, McGraw-Hill, New York, 1965.

    Google Scholar 

  5. A. N. Nesmayanov, G. I. Samal, and M. M. Pavlyuchenko:Zh. Neorg. Khim, 1967, vol. 12, pp. 1713–15.

    Google Scholar 

  6. R. Peronne, D. Balesdent, and J. Rilling:Bull. Soc. Chim. Fr., 1972, pp. 457-63.

  7. M. Nagamori:Can. Met. Quart., 1970, vol. 9, pp. 531–33.

    Article  CAS  Google Scholar 

  8. M. Nagamori and T. R. Ingraham:Met. Trans., 1970, vol. 1, pp. 1821–25.

    Article  CAS  Google Scholar 

  9. M. Nagamori and M. Kameda:Trans. Jap. Inst. Metals, 1968, vol. 9, pp. 187–94.

    Article  CAS  Google Scholar 

  10. M. Nagamori, T. Hatakeyama, and M. Kameda:Trans. Jap. Inst. Metals, 1970, vol. 11, pp. 190–94.

    Article  Google Scholar 

  11. O. Kubaschewski, E. Ll. Evans, and C. B. Alcock:Metallurgical Thermo- chemistry, Pergamon Press, New York, 1967.

    Google Scholar 

  12. C. J. Smithells:Metals Reference Book, Plenum Press, New York, 1967.

    Google Scholar 

  13. W. R. Cook:Nat. Bur. Stand. (U.S.) Spec. Publ., 1972, no. 364, pp. 703-12.

  14. H. H. Kellogg,Trans. TMS-AIME, 1964, vol.230, pp. 1622–34.

    Google Scholar 

  15. D. Arndt and E. Kordes:Z. Anorg. Allg. Chem., 1968, vol. 359, pp. 1–13.

    Article  CAS  Google Scholar 

  16. E. M. Cox, M. C. Bachelder, N. H. Nachtrieb, and A. S. Skapski:Trans. AIME, 1949. vol. 185, pp. 27–31.

    Google Scholar 

  17. T. Tanaka, K. Watanabe, and J. Kurihara:Me. Fac. Eng. Hokkaido Univ. (Japan), 1950, vol. 8, pt. 1, pp. 14–22.

    CAS  Google Scholar 

  18. K. Sudo:Sci. Rep. Res. Inst., Tohoku Univ. (Japan), 1950, vol. A2, pp. 513–18.

    Google Scholar 

  19. T. Yagihashi and T. Sato:Nippon Kinzoku Gakkaishi, 1952, vol. 16, pp. 482–86.

    CAS  Google Scholar 

  20. E. Kordes and B. Rackow:Z. Phys. Chem., 1952, vol. 200, p. 129–57.

    Article  CAS  Google Scholar 

  21. A. A. Brooks:J. Amer. Chem. Soc., 1953, vol. 75, p. 2464.

    Article  CAS  Google Scholar 

  22. A. Kihira:Res. Rep. Fac. Eng. Nagoya Univ. (Japan), 1950, vol. 3, pp. 39–42.

    CAS  Google Scholar 

  23. F. D. Richardson and J. E. Antill:Trans. Faraday Soc., 1955, vol. 51, pp. 22–25.

    Article  CAS  Google Scholar 

  24. R. A. Isakova and V. D. Ponomarev:Izv. Akad. Nauk Kaz. SSR, Ser. Met., Obogashch.Ogneuporov., 1959, no. 1, pp. 65-70.

  25. D. Arndt:Diplomarbeit, Bonn, 1962.

  26. J. Sodi and J. Elliott:Trans. TMS-AIME, 1968, vol. 242, pp. 2143–45.

    CAS  Google Scholar 

  27. V. M. Glazov and N. M. Korenchuk:Zh. Fiz. Khim., 1971, vol. 45, no. 10, p. 26–76.

    Google Scholar 

  28. O. Kubaschewski and J. A. Catterall:Thermochemical Data of Alloys, Pergamon Press, London, 1956.

    Google Scholar 

  29. V. A. Kudinova, V. V. Khromtsov, L. E. Isakova, and V. P. Kalashnikova:Uch. Zap. Ural. Gos. Univ., 1971, no. 119, pp. 58-74.

  30. S. Djurle:Acta Chem. Scand., 1958, vol. 12, pp. 1415–26.

    Article  CAS  Google Scholar 

  31. E. H. Roseboom:Econ. Geol., 1966, vol. 61, pp. 641–72.

    Article  CAS  Google Scholar 

  32. A. Casalot:Semin. Etat Solide, 1969-70, no. 4, pp. 157-75.

  33. H. Luquet, F. Guastavino, J. Bougnot, and J. C. Vaissière:Mater. Res. Bull., 1972, vol. 7, pp. 955–62.

    Article  CAS  Google Scholar 

  34. P. Kubaschewski:Ber. Bunsenges. Phys. Chem., 1973, vol. 77, no. 2, pp. 74–80.

    CAS  Google Scholar 

  35. M. M. Kazinets:Izv. Akad. Nauk SSSR, Neorg. Mater., 1972, vol. 8, pp. 1011–14.

    CAS  Google Scholar 

  36. V. N. Konov and V. A. Kudinova:Izv. Akad. Nauk SSSR, Neorg. Mater., 1973, vol. 9, pp. 1132–37.

    Google Scholar 

  37. N. Morimoto and G. Kullerud:Amer. Mineral, 1963, vol. 48, pp. 110–23.

    CAS  Google Scholar 

  38. P. Rahlfs:Z. Phys. Chem. (Leipzig), 1936, vol. 31, pp. 157–94.

    Google Scholar 

  39. L. W. Strock:Z. Phys. Chem. (Leipzig), 1934, vol. 25, pp. 44–59 ; 1935, vol. 31, pp. 132-36.

    Google Scholar 

  40. M. Laffitte:Bull. Soc. Chim. Fr., 1959, pp. 1211-22.

  41. G. Hägg:Nature, 1933, vol. 131, pp. 167–68.

    Article  Google Scholar 

  42. G. Hagg and A. L. Kindström:Z. Phys. Chem. (Leipzig), 1933, vol. 22, pp. 453–64.

    Google Scholar 

  43. M. Nagamori and T. R. Ingraham:Met. Trans., 1971, vol. 2, pp. 1501–03.

    CAS  Google Scholar 

  44. M. D. Banus and T. B. Reed:The Chemistry of Extended Defects in Non- metallic Solids, L. Eyring and M. O’Keeffe, eds., pp. 488–521, American Elsevier, New York, 1970.

    Google Scholar 

  45. E. Hirahara:J. Phys. Soc. Jap., 1951, vol. 6, pp. 422–27.

    Article  Google Scholar 

  46. V. Wehefritz:Z. Phys. Chem., N.F., 1960, vol. 26, pp. 339–58.

    Article  CAS  Google Scholar 

  47. K. Weiss:Ber. Bunsenges. Phys. Chem., 1969, vol. 73, pp. 338–44.

    CAS  Google Scholar 

  48. K. Okamoto and S. Kawai:Jap. J. Appl. Phys., 1973, vol. 12, pp. 1130–38.

    Article  CAS  Google Scholar 

  49. N. Nakayama:J. Phys. Soc. Jap., 1968, vol. 25, pp. 290–91.

    Article  CAS  Google Scholar 

  50. G. B. Abdullaev, Z. A. Aliyarova, E. H. Zamanova, and G. A. Asadov:Phys. Status Solidi, 1968, vol. 26, pp. 65–68.

    Article  CAS  Google Scholar 

  51. S. Martinuzzi, M. Gaign, and W. Palz:Phys. Status Solidi A, 1970, vol. 2, pp. K9–11.

    Article  CAS  Google Scholar 

  52. N. A. Vlasenko and Ya. F. Kononetz:Ukr. Fiz. Zh., 1971, vol. 16, no. 2, pp. 237–43.

    Google Scholar 

  53. O. P. Astakhov, V. V. Lobankov, I. V. Sgibnev, and B. M. Surkov:Teplofiz., Vys. Temp., 1972, vol. 10, pp. 654–55.

    CAS  Google Scholar 

  54. T. Kushida:J. Sci. Hiroshima Univ., 1952, Ser. A16, pp. 75–80.

    Google Scholar 

  55. L. Eisenmann:Ann. Phys., 1952, vol. 10, pp. 129–52.

    Article  Google Scholar 

  56. J. B. Wanger and C. Wagner:J. Chem. Phys., 1957, vol. 26, pp. 1602–06.

    Article  Google Scholar 

  57. K. Okamoto, S. Kawai, and R. Kiriyama:Jap. J. Appl. Phys., 1969, vol. 8, no. 6, pp. 718–24.

    Article  CAS  Google Scholar 

  58. J. P. Delmaire, H. Lebrusq, A. Duquesnoy, and F. Marion:C. R. Acad. Sci. Paris, Ser. C, 1970, vol. 270, pp. 1411–14.

    CAS  Google Scholar 

  59. H. LeBrusq, J. P. Delmaire, A. Duquesnoy, and F. Marion:C. R. Acad. Sci. Paris, Ser. C, 1970, vol. 270, pp. 1757–59.

    CAS  Google Scholar 

  60. J. Bougnot, F. Guastavino, H. Luquet, and D. Sodini:Phys. Status SolidiA, 1971, vol. 8, pp. K93–96.

    Article  CAS  Google Scholar 

  61. A. V. Tarasov, I. T. Gulydin, and A. N. Krestovnikov.Izv. Vyssh. Ucheb. Zaved. Tsvet. Met., 1970, vol. 13, no. 2, pp. 78–82.

    CAS  Google Scholar 

  62. O. P. Astakhov and V. V. Lobankov:Teplofiz. Vys. Temp., 1972, vol. 10, no. 3, pp. 905–06.

    CAS  Google Scholar 

  63. V. M. Glazov and A. S. Burkhanov:Fiz. Tekh. Poluprov, 1973, vol. 7, pp. 1401–05.

    CAS  Google Scholar 

  64. V. M. Glazov, A. N. Krestovnikov, A. S. Okhotin, A. S. Burkhanov, and S. A. Bezekovich:Izv. Vyssh. Ucheb. Zaved., Tsvet. Met., 1970, vol. 13, no. 4, pp. 27–31.

    CAS  Google Scholar 

  65. R. Routie and J. Mahenc:Rev. Chim. Miner., 1969, vol. 6, pp. 991–1003.

    CAS  Google Scholar 

  66. R. Routie and J. Mahenc:J. Chim. Phys. Physicochim. Biol., 1969, vol. 66, no. 6, pp. 1103–08.

    Article  CAS  Google Scholar 

  67. R. Routie and J. Mahenc:Electrochim. Acta, 1970, vol. 15, pp. 1201–07.

    Article  CAS  Google Scholar 

  68. J. Mahenc, R. Routie, and P. Taxil:J. Chim. Phys. Physicochim. Biol., 1970, vol. 67, no. l,pp. 73–77.

    Article  CAS  Google Scholar 

  69. P. Kofstad:Nonstoichiometry, Diffusion, and Electrical Conductivity in Binary Metal Oxides, Wiley-Interscience, New York, 1972.

    Google Scholar 

  70. J. J. Adou and J. Baudet:J. Chim. Phys., 1967, vol. 64, pp. 1540–46.

    Article  CAS  Google Scholar 

  71. M. O’TCeeffe and F. S. Stone:Proc. Roy. Soc. (London), 1962, vol. A267, pp. 501–17.

    Google Scholar 

  72. M. O’Keeffe and W. J. Moore:J. Chim. Phys., 1961, vol. 35, pp. 1324–28.

    Article  Google Scholar 

  73. A. Dumon, A. Casalot, E. Poquet, and S. Gromb:C. R. Acad. Sci. Paris, Ser. B, 1969, vol. 269, pp. 835–37.

    CAS  Google Scholar 

  74. H. J. Mathieu and H. Rickert:Z. Phys. Chem. N.F., 1972, vol. 79, pp. 315–30.

    Article  CAS  Google Scholar 

  75. R. Fowler and E. A. Guggenheim:Statistical Thermodynamics, Univ. Press, Cambridge, 1965.

    Google Scholar 

  76. E. A. Guggenheim:Mixtures, Clarendon Press, Oxford, 1952.

    Google Scholar 

  77. G. S. Rushbrooke:Introduction to Statistical Mechanics, Clarendon Press, Oxford, 1951.

    Google Scholar 

  78. G. G. Libowitz:The Chemical Structure of Solids, N. B. Hannay, ed., vol. 1, pp. 335–85, Plenum Press, New York, 1973.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Formerly Postdoctorate Fellow, National Research Council of Canada, Ottawa, Ontario

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nagamori, M. A thermodynamic study of digenite solid solution (cu2-δs) at 600 to 1000°c and a statistical thermodynamic critique on general nonstoichiometry. Metall Trans B 7, 67–80 (1976). https://doi.org/10.1007/BF02652821

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02652821

Keywords

Navigation