Skip to main content
Log in

Creep crack growth behavior of several structural alloys

  • Published:
Metallurgical Transactions A Aims and scope Submit manuscript

Abstract

Creep crack growth behavior of several high temperature alloys, Inconel 600, Inconel 625, Inconel X-750, Hastelloy X, Nimonic PE-16, Incoloy 800, and Haynes 25 (HS-25) was examined at 540, 650, 760, and 870 °C. Crack growth rates were analyzed in terms of both linear elastic stress intensity factor and J*-integral parameter. Among the alloys Inconel 600 and Hastelloy X did not show any observable crack growth. Instead, they deformed at a rapid rate resulting in severe blunting of the crack tip. The other alloys, Inconel 625, Inconel X-750, Incoloy 800, HS-25, and PE-16 showed crack growth at one or two temperatures and deformed continuously at other temperatures. Crack growth rates of the above alloys in terms ofJ* parameter were compared with the growth rates of other alloys published in the literature. Alloys such as Inconel X-750, Alloy 718, and IN-100 show very high growth rates as a result of their sensitivity to an air environment. Based on detailed fracture surface analysis, it is proposed that creep crack growth occurs by the nucleation and growth of wedge-type cracks at triple point junctions due to grain boundary sliding or by the formation and growth of cavities at the boundaries. Crack growth in the above alloys occurs only in some critical range of strain rates or temperatures. Since the service conditions for these alloys usually fall within this critical range, knowledge and understanding of creep crack growth behavior of the structural alloys are important.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. G. Popp and A. Coles:Proc. Air Force Conference on Fatigue and Fracture of Aircraft Structures and Materials, AFFDL TR 70-144, 1970, pp. 71–96.

  2. S. Floreen:Metall. Trans. A, vol. 6A, pp. 1741–49.

  3. K. Sadananda and P. Shahinian:Metall. Trans. A, 1977, vol. 8A, pp. 439–49.

    CAS  Google Scholar 

  4. K. Sadananda and P. Shahinian:J. Eng. Mater. Technol., Trans. ASME, 1978, vol. 100, pp. 381–87.

    CAS  Google Scholar 

  5. J. D. Landes and J. A. Begley:Mechanics of Crack Growth, ASTM STP 590, 1976, pp. 128-48.

  6. K. Sadananda and P. Shahinian:Metall. Trans. A, 1978, vol. 9A, pp. 79–84.

    CAS  Google Scholar 

  7. M. Prager and G. Sines:Weldments: Physical Metallurgy and Fracture Phenomenon, R. J. Christoffel, E. F. Nippes, and H. D. Soloman,eds., General Electric Co., Schenectady, NY, 1979, pp. 379–91.

    Google Scholar 

  8. S. Floreen and R. H. Kane:Metall. Trans. A, 1976, vol. 7A, pp. 1157–60.

    CAS  Google Scholar 

  9. R. B. Scarlin:Mater. Sci. and Eng., 1977, vol. 30, pp. 55–64.

    Article  CAS  Google Scholar 

  10. R. M. Wallace, C. G. Annis, Jr., and D. L. Sims:Application of Fracture Mechanics at Elevated Temperatures, AFML-TR 76-176, Part II, Air Force Materials Laboratory, Dayton, OH, 1977.

    Google Scholar 

  11. A. E. Gemma:Eng. Frac. Mech., 1979, vol. 11, pp. 763–74.

    Article  CAS  Google Scholar 

  12. R. C. Donat, T. Nicholas, and L. S. Fu:Fracture, 13th National Fracture Mechanics Conference, ASTM STP 743, 1981, pp. 186–206.

  13. R.B. Scalin:Metall. Trans. A, 1977, vol. 8A, pp. 1941–48.

    Google Scholar 

  14. K. Sadananda and P. Shahinian:Mater. Sci. and Engr., 1979, vol. 38, pp. 81–88.

    Article  CAS  Google Scholar 

  15. K. Sadananda and P. Shahinian:Metal. Sci., 1981, vol. 15, pp. 425–32.

    CAS  Google Scholar 

  16. K. Sadananda and P. Shahinian:Eng. Frac. Mech., 1981, vol. 15, pp. 327–42.

    Article  CAS  Google Scholar 

  17. W. J. Mills:Deformation and Fracture Characteristics of Inconel X-750 at Room Temperature and Elevated Temperature, HEDL-SA1817, Hanford Engineering Development Laboratory, Richland, WA,April 1970.

    Google Scholar 

  18. L. A. James:Effect of Temperature upon the Fatigue Crack Propagation Behavior of Inconel 625, HEDL-TME 77-2, Hanford Engineering Development Laboratory, Richland, WA, March 1977.

    Google Scholar 

  19. Annual Book of ASTM Standards, American Society for Testing and Materials, Philadelphia, PA, 1974, part 10, pp. 432-51.

  20. W.K. Wilson:Eng. Frac. Mech., 1970, vol. 2, pp. 169–71.

    Article  Google Scholar 

  21. J. G. Kaufman, K. O. Boradas, D.A. Mouney, and R. C. Malcolm:Mechanics of Crack Growth, ASTM STP 590, 1976, pp. 149–68.

  22. P. Shahinian:Welding Jour. Res. Supplement, March 1978, pp. 845–925.

  23. K. Sadananda and P. Shahinian:Res. Mechanics, 1980, vol. 1, pp. 109–28.

    CAS  Google Scholar 

  24. A. A. Tarassoli:J. Nucl. Eng. and Design, 1979, vol. 54, pp. 279–87.

    Article  Google Scholar 

  25. W. B. Jones and R.M. Allen:Metall. Trans. A, 1982, vol. 13A, pp. 637–48.

    Google Scholar 

  26. T. Ohmura, R. M. Pelloux, and N. J. Grant:Eng. Frac. Mech., 1973, vol. 5, pp. 909–22.

    Article  CAS  Google Scholar 

  27. T. Weerasooriya and J. P. Strizak:Crack Propagation in Hastelloy X,ONRL/TM-7255, Oak Ridge National Laboratory, Oak Ridge, TN,May 1980.

    Google Scholar 

  28. K. Sadananda and P. Shahinian:Metals Technology, 1982, vol. 9, pp. 18–25.

    CAS  Google Scholar 

  29. K. Sadananda and P. Shahinian:14th National Fracture Mechanics Conference, ASTM STP, 1983, in press.

  30. R. Koterazawa and T. Mori:J. Eng. Mater. and Tech., Trans. ASME, 1977, vol. 99, pp. 298–304.

    CAS  Google Scholar 

  31. S. Taira, P. Ohtani, and T. Komatsu:J. Eng. Mater. and Tech., Trans.ASME, 1979, vol. 101, pp. 162–67.

    Article  CAS  Google Scholar 

  32. K. Sadananda and P. Shahinian:Metall. Trans. A, 1980, vol. 11 A, pp. 267–76.

    Google Scholar 

  33. K. Sadananda and P. Shahinian:Mat. Sci. Eng., 1980, vol. 43, pp. 159–68.

    Article  CAS  Google Scholar 

  34. H. Riedel and J. R. Rice: inFracture Mechanics, ASTM STP 700, 1980, pp. 112–30.

  35. F. W. Grossman and M. F. Ashby:Acta Met., 1975, vol. 23, pp. 425–40.

    Article  Google Scholar 

  36. D. McLean:J. Inst. Met., London, 1956, vol. 85, p. 468.

    Google Scholar 

  37. H. C. Chang and N. J. Grant:Trans. AIME, 1956, vol. 206, p. 544.

    Google Scholar 

  38. A. W. Mullendore and N. J. Grant: inDeformation and Fracture at Elevated Temperatures, A. W. Mullendore and N. J. Grant, eds., MIT Press, Cambridge, MA, 1964, p. 165.

    Google Scholar 

  39. J. A. Williams:Acta Met., 1967, vol. 15, pp. 1119–24 and pp. 1559-62.

    Article  CAS  Google Scholar 

  40. U. Lindborg:Acta Met., 1969, vol. 17, pp. 157–65.

    Article  CAS  Google Scholar 

  41. R. Soderberg:J. Mater. Sci., 1972, vol. 7, pp. 1373–78.

    Article  CAS  Google Scholar 

  42. D.A. Miller and T. G. Langdon:Metall. Trans. A, 1979, vol. 10A, pp. 1635–41.

    CAS  Google Scholar 

  43. C. Gandhi and R. Raj:Metall. Trans. A, 1981, vol. 12A, pp. 515–20.

    Google Scholar 

  44. I-W Chen and A. S. Argon:Acta Met., 1981, vol. 29, pp. 1321–33.

    Article  CAS  Google Scholar 

  45. A. N. Stroh:Advances in Physics, 1957, vol. 6, p. 418.

    Google Scholar 

  46. F. A. McClintock and J. L. Bassani:Three Dimensional Constitutive Relationships and Ductile Fracture, J. Zarka and S. Nemat-Nassar,eds., North Holland Publishing Co., Dourdan, 1981, pp. 119–41.

    Google Scholar 

  47. J. L. Bassani: inCreep and Fracture of Engineering Materials and Structures, B. Wilshire and D. R. J. Owen, eds., Pineridge Press,Swansea, 1981, pp. 329–44.

    Google Scholar 

  48. A. S. Agon, I-WChen, and C. W. Lau: inCreep-Fatigue and Environmental Interactions, R. M. N. Pelloux and N. Stoloff, eds., TMS-AIME, Warrendale, PA, 1980, p. 46.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sadananda, K., Shahinian, P. Creep crack growth behavior of several structural alloys. Metall Trans A 14, 1467–1480 (1983). https://doi.org/10.1007/BF02664831

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02664831

Keywords

Navigation