Skip to main content
Log in

The mechanisms and temperature dependence of superlattice stacking fault formation in the single-crystal superalloy PWA 1480

  • Published:
Metallurgical Transactions A Aims and scope Submit manuscript

Abstract

Deformation microstructures in PWA 1480 nickel-base superalloy single crystals were studied in the range of 20 °C to 1100 °C. Similar to previous investigations, superlattice stacking faults were observed after slow strain rate deformation at temperatures between 700 °C and 950 °C. Unlike previous studies, a high density of superlattice stacking faults was observed after deformation at 200 °C and below. The mechanisms of fault formation in the two temperature regimes were different. In the range of 700 °C to 950 °C, single isolated superlattice-intrinsic stacking faults (SISFs) were produced by the decomposition of an a/2(110) matrix dislocation in the γ/γ′ interface. The a/3(112) partial shears the particle, while the a/6(112) Shockley remains in the interface. At 200 °C and below, a high density of faults was produced on closely spaced parallel planes. The most common feature after deformation in this range is the faulted loop, which is most often observed to be a superlattice-extrinsic stacking fault (SESF). These low-temperature faults, along with their temperature dependence, were quite similar to those observed in single-phase Ll22 materials. The available evidence suggests that the low-temperature faults were produced by the dissociation of an a<11> unit superdislocation into a pair of a/3<112> partials. The temperature dependence of the faulting (at low temperatures) was modeled by linear isotropic elasticity, and the results suggest that the SISF energy increases significantly from 20 °C to 400 °C. Multiplanar, overlapping superlattice faults were analyzed with respect to bond violations. This analysis suggested that an antiphase boundary (APB) on top of an SISF has a very high fault energy, similar to that of the complex stacking fault. Therefore, the presence of SISF loops on glide planes promotes further dissociation by the SISF scheme instead of the APB scheme and explains the high density of SESFs and microtwins observed in the deformation structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W.W. Milligan and S.D. Antolovich:Metall. Trans. A, 1987, vol. 18A, pp. 85–95.

    CAS  Google Scholar 

  2. D.M. Shah and D.M. Duhl: inSuperalloys 1984, Proc. 5th Int. Symp. on Superalloys, M. Gell, C.S. Kortovich, R.H. Bricknell, W.B. Kent, and J.F. Radavich, eds., AIME, Warrendale, PA, 1984, pp. 105–14.

    Google Scholar 

  3. W.W. Milligan and S.D. Antolovich:Metall. Trans. A, 1989, vol. 20A, pp. 1888–89.

    CAS  Google Scholar 

  4. W.W. Milligan and S.D. Antolovich: NASA CR-4215, Cleveland, OH, 1989.

  5. P. Caron, T. Khan, and P. Veyssière:Phil. Mag. A, 1988, vol. 57, pp. 859–75.

    Article  CAS  Google Scholar 

  6. R. Bonnet and A. Ati:Acta Metall., 1989, vol. 37, pp. 2153–69.

    Article  CAS  Google Scholar 

  7. M. Condat and B. Décamps:Scripta Metall., 1987, vol. 21, pp. 607–12.

    Article  CAS  Google Scholar 

  8. S. Takeuchi, E. Kuramoto, T. Yamamoto, and T. Taoka:Jpn. J. Appl. Phys., 1973, vol. 12, pp. 1486–92.

    Article  CAS  Google Scholar 

  9. K. Suzuki, M. Ichihara, and S. Takeuchi:Acta Metall., 1979, vol. 27, pp. 193–200.

    Article  CAS  Google Scholar 

  10. I. Baker and E.M. Schulson:Phys. Status Solidi, 1985, vol. 89, pp. 163–72.

    Article  CAS  Google Scholar 

  11. H-r. Pak, T. Saburi, and S. Nenno:Scripta Metall., 1976, vol. 10, pp. 1081–85.

    Article  CAS  Google Scholar 

  12. A.F. Giamei, J.M. Oblak, B.H. Kear, and W.H. Rand:Proc. EMSA, 1971, vol. 29, pp. 112–13.

    CAS  Google Scholar 

  13. L.M. Howe, M. Rainville, and E.M. Schulson:J. Nucl. Mater., 1974, vol. 50, pp. 139–54.

    Article  CAS  Google Scholar 

  14. P. Holdway and A.E. Staton-Bevan:J. Mater. Sci., 1986, vol. 21, pp. 2843–49.

    Article  CAS  Google Scholar 

  15. Y. Liu, T. Takasugi, O. Izumi, and T. Takahashi:Acta Metall., 1988, vol. 36, pp. 2959–66.

    Article  CAS  Google Scholar 

  16. P. Veyssière, J. Douin, and P. Beauchamp:Phil. Mag. A, 1985, vol. 51, pp. 469–83.

    Article  Google Scholar 

  17. P. Veyssière, D.L. Guan, and J. Rabier:Phil. Mag. A, 1984, vol. 49, pp. 45–54.

    Article  Google Scholar 

  18. M.H. Yoo:Scripta Metall., 1986, vol. 20, pp. 915–20.

    Article  CAS  Google Scholar 

  19. M.H. Yoo:Acta Metall., 1987, vol. 35, pp. 1559–70.

    Article  CAS  Google Scholar 

  20. G. Vanderschaave:Phil. Mag. A, 1987, vol. 56, pp. 689–701.

    Article  Google Scholar 

  21. J. Douin, P. Veyssière, and P. Beauchamp:Phil. Mag. A, 1986, vol. 54, pp. 375–93.

    Article  CAS  Google Scholar 

  22. V. Vitek:Phil. Mag. A, 1988, vol. 58, pp. 193–212.

    Article  CAS  Google Scholar 

  23. J.K. Tien, S. Eng, and J.M. Sanchez:MRSProc, 1987, vol. 81, pp. 183–93.

    CAS  Google Scholar 

  24. J.M. Sanchez, S. Eng, Y.P. Yu, and J.K. Tien:MRS Proc, 1987, vol. 81, pp. 57–64.

    CAS  Google Scholar 

  25. S.M. Copley and B.H. Kear:Trans. TMS-AIME, 1967, vol. 239, pp. 984–92.

    CAS  Google Scholar 

  26. P.A. Flinn:Trans. TMS-AIME, 1960, vol. 218, pp. 145–54.

    CAS  Google Scholar 

  27. I. Baker and E.M. Schulson:Phys. Status Solidi A, 1984, vol. 85, pp. 481–90.

    Article  CAS  Google Scholar 

  28. L. Remy, B. Thomas, and A. Pineau:Mater. Sci. Eng., 1978, vol. 36, pp. 47–63.

    Article  CAS  Google Scholar 

  29. P.C.J. Gallagher:Metall. Trans., 1970, vol. 1, pp. 2429–61.

    CAS  Google Scholar 

  30. G.S. Hillier, C.M.F. Rae, and H.K.D.H. Bhadeshia:Acta Metall., 1988, vol. 36, pp. 95–109.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Milligan, W.W., Antolovich, S.D. The mechanisms and temperature dependence of superlattice stacking fault formation in the single-crystal superalloy PWA 1480. Metall Trans A 22, 2309–2318 (1991). https://doi.org/10.1007/BF02664997

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02664997

Keywords

Navigation