Skip to main content
Log in

The Role of grain boundary misorientation in intergranular cracking of Ni-16Cr-9Fe in 360 °C argon and high-Purity water

  • Published:
Metallurgical Transactions A Aims and scope Submit manuscript

Abstract

The effect of grain boundary misorientation on the intergranular cracking behavior of pure Ni-16Cr-9Fe was assessed by determining if low-angle boundaries (LABs) or coincident site lattice boundaries (CSLBs) are more crack resistant than general high-angle boundaries (GHABs) in argon and high-purity water. Cracking susceptibility of boundary types was determined using constant extension rate tensile tests (CERTs) in 360 °C argon and in deaerated, high-purity water. Annealed samples contained 12 to 20 pct CSLBs, while CSLB-enhanced samples contained 27 to 44 pct CSLBs; GHAB proportions varied accordingly. Cracked boundary fractions for CSLB-enhanced samples tested in either environment ranged from 0.01 to 0.08, while those for annealed samples ranged from 0.07 to 0.10, indicating that samples with increased proportions of CSLBs are more crack resistant. No LABs cracked in either environment. In annealed samples, the proportion of CSLBs that cracked in water was 6.7 pct compared to 1.5 pct in argon; the proportion of GHABs that cracked in water was 9.3 pct compared to 6.6 pct for argon. Thus, CSLBs are more crack resistant than GHABs in either environment, and both are more crack resistant in argon than in water. The higher amounts of cracking and the higher CSLB cracking susceptibility in high-purity water indicate the presence of an environmental effect on cracking behavior. The beneficial effect of LABs and CSLBs is likely due to the ability of these boundaries to induce slip in neighboring grains by either transmitting or absorbing and re-emitting lattice dislocations, thereby reducing grain boundary stresses and the propensity for crack initiation. The results indicate that control of grain boundary proportions can improve the intergranular stress corrosion cracking susceptibility of pure Ni-16Cr-9Fe.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G.P. Airey:Metallography, 1980, vol. 13, pp. 21–41.

    Article  CAS  Google Scholar 

  2. G.P. Airey:1st Int. Symp. on Environmental Degradation of Materials in Nuclear Power Systems—Water Reactors, NACE, Houston, TX, 1984, pp. 462–78.

    Google Scholar 

  3. T.S. Bulischeck and D. van Rooyen:Nucl. Tecnnol., 1981, vol. 55, pp. 383–93.

    CAS  Google Scholar 

  4. S.J. Green and J.P. Payne:Nucl. Technol., 1981, vol. 55, pp. 10–29.

    CAS  Google Scholar 

  5. D. van Rooyen:Corrosion, 1975, vol. 9, pp. 327–37.

    Article  Google Scholar 

  6. V.B. Rajan, J.K. Sung, and G.S. Was:3rd Int. Symp. on Environmental Degradation of Materials in Nuclear Power Systems—Water Reactors, TMS-AIME, Warrendale, PA, 1988, pp. 545–50.

    Google Scholar 

  7. J.K. Sung and G.S. Was:Proc. 4th Int. Symp. on the Environmental Degradation of Materials in Nuclear Power Systems—Water Reactors, NACE, Houston, TX, 1989, pp. 6–25-6-37.

    Google Scholar 

  8. K. Norring, J. Engstrom, and P. Norberg:3rd Int. Symp. on Environmental Degradation of Materials in Nuclear Power Systems—Water Reactors, TMS-AIME, Warrendale, PA, 1988, pp. 587–93.

    Google Scholar 

  9. G.P. Airey:Corrosion, 1979, vol. 35, pp. 129–36.

    Article  CAS  Google Scholar 

  10. D. Lee and D.A. Vermilyea:Metall. Trans., 1971, vol. 2, pp. 2565–71.

    Article  CAS  Google Scholar 

  11. G.S. Was:Corrosion, 1990, vol. 46, pp. 319–30.

    Article  CAS  Google Scholar 

  12. C.L. Briant, C.S. O’Toole, and E.L. Hall:Corrosion, 1986, vol. 42, pp. 15–27.

    Article  CAS  Google Scholar 

  13. G.S. Was and J.K. Sung:Corrosion ’90, NACE, Houston, TX, 1990, paper no. 519.

    Google Scholar 

  14. R.H. Jones and S.M. Bruemmer: inEnvironment-Induced Cracking of Metals, R.P. Gangloff and M.B. Ives, eds., NACE, Houston, TX, 1990, pp. 287–310.

    Google Scholar 

  15. R. Bandy and D. van Rooyen:Nucl. Eng. Des., 1985, vol. 86, pp. 49–56.

    Article  CAS  Google Scholar 

  16. H.A. Domian, R.H. Emanuelson, L.W. Sarver, G.J. Theus, and L. Katz:Corrosion, 1977, vol. 33, pp. 26–37.

    Article  CAS  Google Scholar 

  17. T. Watanabe:Res. Mech., 1984, vol. 11, pp. 47–82.

    CAS  Google Scholar 

  18. T. Watanabe:J. Phys., 1988, vol. 49, coll. C5, suppl. no. 10, pp. c5-507-c5-519.

    Google Scholar 

  19. P.H. Pumphrey: inGrain Boundary Structure and Properties, D.A. Chadwick and G.A. Smith, eds., Academic Press, London, 1976, pp. 139–200.

    Google Scholar 

  20. L.C. Um and T. Watanabe:Acta Metall., 1990, vol. 38, pp. 2507–16.

    Article  Google Scholar 

  21. J. Don and S. Majumdar:Acta Metall., 1986, vol. 34, pp. 961–67.

    Article  CAS  Google Scholar 

  22. M. Butron-Guillen, J. Cabanas-Moren, and J. Weertman:Scripta Metall., 1990, vol. 24, pp. 991–96.

    Article  CAS  Google Scholar 

  23. T. Watanabe:Metall. Trans. A, 1983, vol. 14A, pp. 531–45.

    Article  Google Scholar 

  24. T. Watanabe, N. Yoshikawa, and S. Karashima:Proc. 6th Int. Conf. on Textures of Materials (ICOTOM-6), Iron and Steel Institute of Japan, Tokyo, Japan, 1981, vol. 1, pp. 609–18.

    Google Scholar 

  25. H. Kokawa, T. Watanabe, and S. Karashima:Phil. Mag. A, 1981, vol. A44, pp. 1239–54.

    Article  Google Scholar 

  26. Y.T. Chou, B.C. Cai, A.D. Rmig, Jr., and L.S. Lin:Phil. Mag. A, 1983, vol. 47A, pp. 363–68.

    Article  Google Scholar 

  27. T. Watanabe:Grain Boundary Structure and Related Phenomena: Proc. JIMIS-4 (1986), Suppl. to Trans. Jpn. Inst. Met., 1986, pp. 73–82.

  28. V. Rändle and A. Brown:Phil. Mag. A, 1988, vol. 58, pp. 717–36.

    Article  Google Scholar 

  29. T. Watanabe, H. Fuji, H. Oikawa, and K.I. Arai:Ada Metall., 1989, vol. 37, pp. 941–52.

    Article  CAS  Google Scholar 

  30. T. Watanabe, Y. Kawamata, and S. Karashima:Grain Boundary Structure and Related Phenomena: Proc. JIMIS-4 (1986), Suppl. Trans. Jpn. Inst. Met., 1986, pp. 601–07.

  31. D.C. Crawford and G.S. Was:J. Electron Microsc. Technique, 1991, vol. 19, pp. 345–60.

    Article  CAS  Google Scholar 

  32. R. Bandy and D. van Rooyen:Corrosion, 1984, vol. 43, pp. 425–30.

    Article  Google Scholar 

  33. N. Totsuka and Z. Szklarska-Smialowska:Corrosion, 1987, vol. 43, pp. 734–38.

    Article  CAS  Google Scholar 

  34. D.C. Crawford: Ph.D. Dissertation, The University of Michigan, Ann Arbor, MI, 1991.

    Google Scholar 

  35. G.E. Dieter:Mechanical Metallurgy, 2nd ed., McGraw-Hill, New York, NY, 1976, p. 198.

    Google Scholar 

  36. D. Joy, D. Newbury, and D. Davidson:J. Appl. Phys., 1982, vol. 53, pp. R81-R122.

    Article  CAS  Google Scholar 

  37. D. Newbury, D. Joy, P. Echlin, C. Fiori, and J. Goldstein:Advanced Scanning Electron Microscopy and X-ray Microanalysis, Plenum Press, New York, NY, 1986, pp. 123–36.

    Book  Google Scholar 

  38. P. Heilmann, W.A.T. Clark, and D.A. Rigney:Ultramicroscopy, 1982, vol. 9, pp. 365–72.

    Article  CAS  Google Scholar 

  39. D. Brandon:Acta Metall., 1966, vol. 14, pp. 1479–84.

    Article  CAS  Google Scholar 

  40. L.S. Schvindelerman and B.B. Straumal:Acta Metall., 1985, vol. 33, pp. 1735–49.

    Article  Google Scholar 

  41. A. Garbacz and M.W. Grabski:Scripta Metall., 1989, vol. 23, pp. 1369–74.

    Article  Google Scholar 

  42. L. Priester:Rev. Phys. Appl., 1989, vol. 24, pp. 419–38.

    Article  CAS  Google Scholar 

  43. M. Yamashita, T. Mimaki, S. Hashimoto, and S. Miura:Scripta Metall., 1988, vol. 22, pp. 1087–91.

    Article  CAS  Google Scholar 

  44. L.C. Lim and R.J. Raj:J. Phys., 1985, vol. 46, coll. C4, suppl. no. 4, pp. c4-581-c4-595.

    Google Scholar 

  45. D.J. Dingley and R.C. Pond:Ada Metall., 1979, vol. 27, pp. 667–82.

    Article  CAS  Google Scholar 

  46. C. Lim and R. Raj:Ada Metall., 1984, vol. 32, pp. 1183–90.

    Article  CAS  Google Scholar 

  47. D.H. Warrington: inGrain Boundary Structure and Kinetics, R.W. Balluffi, ed., ASM, Metals Park, OH, 1980, pp. 1–12.

    Google Scholar 

  48. T.C. Lee, I.M. Robertson, and H.K. Birnbaum:Scripta Metall., 1989, vol. 23, pp. 799–803.

    Article  CAS  Google Scholar 

  49. T. Watanabe, M. Tanaka, and S. Karashima:Proc. Embrittlement by Liquid and Solid Metals, M.H. Kamdar, ed., TMS-AIME, Watervliet, NY, 1982, pp. 183–96.

    Google Scholar 

  50. H. Zhang, A.H. King, and R. Thomson:J. Mater. Res., 1991, vol. 6, pp. 314–23.

    Article  CAS  Google Scholar 

  51. R.L. Fleischer and W.F. Hosford, Jr.:Trans. TMS-AIME, 1961, vol. 221, pp. 244–47.

    CAS  Google Scholar 

  52. S.V. Raj:Mater. Sci. Eng., 1987, vol. 96, pp. 57–64.

    Article  CAS  Google Scholar 

  53. S. Miyazaki, K. Shibata, and H. Fujita:Ada Metall., 1979, vol. 27, pp. 855–62.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Formerly Graduate Research Assistant, The University of Michigan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Crawford, D.C., Was, G.S. The Role of grain boundary misorientation in intergranular cracking of Ni-16Cr-9Fe in 360 °C argon and high-Purity water. Metall Trans A 23, 1195–1206 (1992). https://doi.org/10.1007/BF02665051

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02665051

Keywords

Navigation