Skip to main content
Log in

Intercritically annealed and isothermally transformed 0.15 Pct C steels containing 1.2 Pct Si-1.5 Pct Mn and 4 Pct Ni: Part II. effect of testing temperature on stress-strain behavior and deformation-induced austenite transformation

  • Published:
Metallurgical Transactions A Aims and scope Submit manuscript

Abstract

Stress-strain behavior and deformation-induced transformation of retained austenite were studied for intercritically annealed and isothermally transformed Si-Mn and Ni steels as a function of testing temperature between −80 °C and 120 °C. Rapid decrease of retained austenite at small strains dominates at low-temperature testing and in microstructures containing martensite. The austenite transformation in microstructures without martensite shifts to larger strains with increasing testing temperature. The accompanying increase of strain-hardening rates at larger strains deters the onset of necking and improves ductility. The benefits of the austenite transformation lead to a peak in ductility between 20 °C and 70 °C in the Si-Mn steel and at 70 °C in the Ni steel. The peaks are dependent on the nature of the dispersed microconstituents produced in the ferrite during isothermal transformation. Higher testing temperatures enhance the mechanical stability of the austenite and result in lower ductility.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. S.A. Kulin, M. Cohen, and B.L. Averbach:J. Met., 1952, vol. 4, pp. 661–68.

    CAS  Google Scholar 

  2. J.R. Patel and M. Cohen:Acta Metall., 1953, vol. l,pp. 531–38.

    Article  Google Scholar 

  3. T. Angel:J. Iron Steel Inst., 1954, vol. 177, pp. 165–74.

    CAS  Google Scholar 

  4. D.C. Ludwigson and J.A. Berger:J. Iron Steel Inst., 1969, vol. 207, pp. 63–69.

    CAS  Google Scholar 

  5. G.P. Sanderson and D.T. Llewellyn:J. Iron Steel Inst., 1969, vol. 207, pp. 1129–40.

    CAS  Google Scholar 

  6. S.S. Hecker, M.G. Stout, K.P. Staudhammer, and J.L. Smith:Metall. Trans. A, 1982, vol. 13A, pp. 619–26.

    Article  Google Scholar 

  7. G.L. Huang, D.K. Matlock, and G. Krauss:Metall. Trans. A, 1989, vol. 20A, pp. 1239–46.

    Article  CAS  Google Scholar 

  8. V.F. Zackay, E.R. Parker, D. Fahr, and R. Busch:Trans. ASM, 1967, vol. 60, pp. 252–59.

    CAS  Google Scholar 

  9. I. Tamura, T. Maki, and H. Hato:Trans. Iron Steel Inst. Jpn., 1970, vol. 10, pp. 163–72.

    Google Scholar 

  10. G.B. Olson and Morris Cohen:Metall. Trans. A, 1975, vol. 6A, pp. 791–95.

    Article  CAS  Google Scholar 

  11. Pat L. Mangonon, Jr. and Gareth Thomas:Metall. Trans., 1970, vol. 1, pp. 1577–86.

    Article  CAS  Google Scholar 

  12. G.B. Olson and M. Azrin:Metall. Trans. A, 1978, vol. 9A, pp. 713–21.

    Article  CAS  Google Scholar 

  13. H.W. Hayden and S. Floreen:Trans. ASM, 1968, vol. 61, pp. 474–88.

    CAS  Google Scholar 

  14. S. Floreen and H.W. Hayden:Trans. ASM, 1968, vol. 61, pp. 489–99.

    CAS  Google Scholar 

  15. T. Furukawa, H. Morikawa, H. Takechi, and K. Koyama: inStructure and Properties of Dual-Phase Steels, R.A. Kot and J.M. Morris, eds., AIME, New York, NY, 1979, pp. 281–303.

    Google Scholar 

  16. A.R. Marder: inFormable HSLA and Dual-Phase Steels, A.T. Davenport, ed., AIME, New York, NY, 1977, pp. 87–98.

    Google Scholar 

  17. J.M. Rigsbee and P. J. VanderArend: inFormable HSLA and Dual-Phase Steels, A.T. Davenport, ed., AIME, New York, NY, 1977, pp. 56–86.

    Google Scholar 

  18. K. Kunishige, M. Takahashi, S. Sugisawa, and T. Masui:Tetsu-to-Hagané, 1979, vol. 65, pp. 1916–25.

    CAS  Google Scholar 

  19. P. Öström, B. Lönnberg, and I. Linden:Met. Technol., 1981, vol. 8, pp. 81–93.

    Article  Google Scholar 

  20. N.-R.V. Bangaru and A.K. Sachdev:Metall. Trans. A, 1982, vol. 13A, pp. 1899–1906.

    Article  Google Scholar 

  21. B.V.N. Rao and M.S. Rashid:Metallography, 1983, vol. 31, pp. 19–37.

    Article  Google Scholar 

  22. G.R. Speich, A.J. Schwoeble, and G.P. Huffman:Metall. Trans. A, 1983, vol. 14A, pp. 1079–87.

    Google Scholar 

  23. J.J. Yi, K.J. Yu, I.S. Kim, and S.J. Kim:Metall. Trans. A, 1983, vol. 14A, pp. 1497–1504.

    Article  CAS  Google Scholar 

  24. A.K. Sachdev:Acta Metall., 1983, vol. 31, pp. 2037–42.

    Article  CAS  Google Scholar 

  25. J.H. Ladriere and X.J. He:Mater. Sci. Eng., 1986, vol. 77, pp. 133–38.

    Article  CAS  Google Scholar 

  26. N.C. Goel, J.P. Chakravarty, and K. Tangri:Metall. Trans. A, 1987, vol. 18A, pp. 5–9.

    Article  CAS  Google Scholar 

  27. W.C. Jeong and C.H. Kim:Metall. Trans. A, 1987, vol. 18A, pp. 933–34.

    Article  CAS  Google Scholar 

  28. Q.Y. Long, D. Tseng, and K. Tangri:Metallography, 1987, vol. 20, pp. 61–73.

    Article  CAS  Google Scholar 

  29. D.K. Matlock, E. Zia-Ebrahimi, and G. Krauss:Deformation, Processing and Structure, G. Krauss, ed., ASM, Metals Park, OH, 1984, pp. 47–87.

    Google Scholar 

  30. N.C. Goel, S. Sangal, and K. Tangri:Metall. Trans. A, 1985, vol. 16A, pp. 2013–21.

    Article  CAS  Google Scholar 

  31. S. Sangal, N.C. Goel, and K. Tangri:Metall. Trans. A, 1985, vol. 16A, pp. 2023–29.

    Article  CAS  Google Scholar 

  32. C. Kim:Metall. Trans. A, 1988, vol. 19A, pp. 1263–68.

    Article  CAS  Google Scholar 

  33. G.R. Speich and R.L. Miller: inStructure and Properties of Dual-Phase Steels, R.A. Kot and J.M. Morris, eds., AIME, New York, NY, 1979, pp. 145–82.

    Google Scholar 

  34. G.T. Eldis: inStructure and Properties of Dual-Phase Steels, R.A. Kot and J.M. Morris, eds., AIME, New York, NY, 1979, pp. 202–20.

    Google Scholar 

  35. O. Matsumura, Y. Sakuma, and H. Takechi:Trans. Iron Steel Inst. Jpn., 1987, vol. 27, pp. 570–79.

    Article  CAS  Google Scholar 

  36. O. Matsumura, Y. Sakuma, and H. Takechi:Scripta Metall., 1987, vol. 21, pp. 1301–06.

    Article  CAS  Google Scholar 

  37. Yasuharu Sakuma, Osamu Matsumura, and Hiroshi Takechi:Metall. Trans. A, 1991, vol. 22A, pp. 489–98.

    Article  CAS  Google Scholar 

  38. Y. Sakuma, D.K. Matlock, and G. Krauss:J. Heat Treat., 1990, vol. 8, pp. 109–20.

    Article  CAS  Google Scholar 

  39. H.C. Chen, H. Era, and M. Shimizu:Metall. Trans. A, 1989, vol. 20A, pp. 437–45.

    Article  CAS  Google Scholar 

  40. K. Sugimoto, M. Misu, M. Kobayashi, and H. Shirasawa:Tetsu-to-Hagané, 1990, vol. 76, pp. 1356–63.

    CAS  Google Scholar 

  41. K. Sugimoto, M. Kobayashi, and S. Hashimoto:J. Jpn. Inst. Met., 1990, vol. 54, pp. 657–63.

    CAS  Google Scholar 

  42. Y. Sakuma, D.K. Matlock, and G. Krauss:Metall. Trans. A, 1992, vol. 23A, pp. 1221–32.

    Article  CAS  Google Scholar 

  43. K.W. Andrews:J. Iron Steel Inst., 1965, vol. 203, pp. 721–27.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sakuma, Y., Matlock, D.K. & Krauss, G. Intercritically annealed and isothermally transformed 0.15 Pct C steels containing 1.2 Pct Si-1.5 Pct Mn and 4 Pct Ni: Part II. effect of testing temperature on stress-strain behavior and deformation-induced austenite transformation. Metall Trans A 23, 1233–1241 (1992). https://doi.org/10.1007/BF02665054

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02665054

Keywords

Navigation