Skip to main content
Log in

Electron diffraction study of a noncrystalline Zr−Ni phase

  • Alloy Phases and Structure
  • Published:
Metallurgical Transactions Aims and scope Submit manuscript

Abstract

Metastable noncrystalline phases were retained by rapid quenching Zr−Ni alloys from the liquid state over the composition range 25 to 70 at. pct Ni. The X-ray and electron diffraction patterns of the metastable phases showed broad diffraction maxima indicating absence of long range crystalline order in them. The pair function of the metastable noncrystalline phase in a splat cooled Zr0.7Ni0.3 alloy was determined from the electron diffraction data. The various interatomic distances corresponding to the positions of the peaks in the pair function curve were determined. The nearest-neighbors coordination number was computed from the area under the first peak. The radius of the first near neighbor shell is 2.95 Å and the ratio of the second to the first interatomic distance is equal to 1.41 which is significantly lower than that observed in most metallic liquids. The local atomic arrangement in the non-crystalline Zr0.7Ni0.3 alloy was shown to be based on simple fcc coordination.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Duwez and R. H. Willens:Trans. TMS-AIME, 1963, vol. 227, p. 367.

    Google Scholar 

  2. P. Duwez:Trans. ASM, 1967, vol. 60, p. 607.

    Google Scholar 

  3. B. C. Giessen: inDevelopments in the Structural Chemistry of Alloy Phases, B. C. Giessen, ed., p. 227, Plenum Press, New York, 1969.

    Google Scholar 

  4. R. Ray, B. C. Giessen, and N. J. Grant:Scripta Met., 1969, vol. 2, p. 357.

    Article  Google Scholar 

  5. M. Hansen:Constitution of Binary Alloys, McGraw-Hill, Inc., N. Y., 1958.

    Google Scholar 

  6. R. P. Elliot:Constitution of Binary Alloys, First Supplement, McGraw-Hill, Inc., N. Y., 1965.

    Google Scholar 

  7. P. Duwez, R. H. Willens, and R. C. Crewdson:J. Appl. Phys., 1965, vol. 36, p. 2267.

    Article  CAS  Google Scholar 

  8. S. C. Lin and P. Duwez:Phys. Stat. Solidi, 1969, vol. 34, p. 469.

    Article  CAS  Google Scholar 

  9. P. L. Maitrepierre:J. Appl. Phys., 1969, vol. 40, p. 4826.

    Article  CAS  Google Scholar 

  10. A. K. Sinha:Phys. Rev., 1970, vol. 1, p. 4541.

    Google Scholar 

  11. A. K. Sinha and Pol Duwez:J. Appl. Phys., 1972, vol. 43, p. 431.

    Article  CAS  Google Scholar 

  12. R. Ray: Ph.D. Thesis, M.I.T., Cambridge, Mass., 1969.

  13. R. C. Ruhl, B. C. Giessen, M. Cohen, and N. J. Grant:Acta Met., 1967, vol. 15, p. 1693.

    Article  CAS  Google Scholar 

  14. R. C. Ruhl and M. Cohen:Trans. TMS-AIME, 1969, vol. 245, p. 241.

    CAS  Google Scholar 

  15. R. C. Ruhl:Mater. Sci. Eng., 1967, vol. 1, p. 313.

    Article  Google Scholar 

  16. B. K. Vainshtein:Iristallografiya, 1957, vol. 2, p. 29.

    CAS  Google Scholar 

  17. J. F. Graezyk and S. C. Moss:Rev. Sci. Instr., 1969, vol. 40, p. 424.

    Article  Google Scholar 

  18. P. M. Morse:Phys. Z., 1932, vol. 33, p. 443.

    Google Scholar 

  19. L. Bewilongua:Phys. Z., 1931, vol. 32, p. 740.

    Google Scholar 

  20. P. B. Hirsch:Electron Microscopy of Thin Crystals, Butterworth and Co. Ltd., 1965.

  21. B. E. Warren:X-ray Diffraction, Addison Wesley, Reading, Mass., 1969.

    Google Scholar 

  22. B. C. Bagery, H. S. Chen, and D. Turnbull:Mater. Res. Bull., 1968, vol. 3, p. 159.

    Article  Google Scholar 

  23. J. D. Bernal:Nature, 1960, vol. 185, p. 68.

    Article  Google Scholar 

  24. G. S. Cargill:J. Appl. Phys., 1970, vol. 41, p. 1.

    Article  Google Scholar 

  25. W. Klement, Jr., R. H. Willens, and P. Duwez:Nature, 1960, vol. 187, p. 869.

    Article  CAS  Google Scholar 

  26. W. Hume-Rothery and E. Anderson:Phil. Mag., 1960, vol. 5, p. 383.

    Article  CAS  Google Scholar 

  27. D. E. Polk:Scripta Met., 1970, vol. 41, p. 12.

    Google Scholar 

  28. R. C. Crewdson: Ph.D. Thesis, California Institute of Technology, 1966.

  29. J. Dixmier and A. Guinier:Mem. Sci. Rev. Met., 1967, vol. 64, p. 53.

    CAS  Google Scholar 

  30. D. E. Polk:Acta Met., 1972, vol. 20, p. 485.

    Article  CAS  Google Scholar 

  31. S. Mader:J. Vac. Sci. Technol., 1965, vol. 2, p. 35.

    Article  CAS  Google Scholar 

  32. B. C. Giessen and C. N. J. Wagner: inLiquid Metals, S. Beer, ed., p. 633, Marcel Dekker, N. Y., 1972.

    Google Scholar 

  33. S. Steeb:Fortschr, Chem. Forsch., 1968, vol. 10, p. 473.

    CAS  Google Scholar 

  34. R. Kaplow, S. L. Strong, and B. L. Averbach:Phys. Rev., 1965, vol. 138, p. A1336.

    Article  Google Scholar 

  35. R. Kaplow, S. L. Strong, and B. L. Averbach: inLocal Atomic Arrangements Studied by X-ray Diffraction, Metallurgical Society of the AIME, New York, 1965, vol. 36, p. 159.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

RANJAN RAY, formerly with Northeastern University, Boston, Mass

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ray, R., Szymanski, D. Electron diffraction study of a noncrystalline Zr−Ni phase. Metall Trans 4, 1785–1790 (1973). https://doi.org/10.1007/BF02665404

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02665404

Keywords

Navigation