Skip to main content
Log in

Grain-boundary structures in hexagonal materials: Coincident and near coincident grain boundaries

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Embedded atom method (EAM) simulations of the structure of grain boundaries in hexagonal metals are presented. The simulations use recently developed interatomic potentials for Ti and Co. Structures were calculated for various symmetrical tilt boundaries with the [1¯100] tilt axis. The structures obtained for both metals are very similar. The energies for the Co boundaries are higher than those for Ti by a factor of 2. The structural unit model was applied to the computed grain-boundary structures in these hexagonal materials. As in cubic materials, the structural unit model can describe a series of symmetrical tilt coincident boundaries. In addition, when the coincidence ratio in the grain-boundary plane varies with thec/a ratio, a structural unit-type model can describe the variation of grain-boundary structure withc/a ratio. This model is adequate for describing series of symmetrical tilt boundaries with the grain-boundary plane oriented perpendicular to a fixed crystallographic direction and varyingc/a ratios. For the structures of the so-called near coincident boundaries that appear in these materials, it was concluded that near coincident boundaries behave similarly to exact coincidence boundaries if there is a coincident periodic structure in the grain-boundary plane. This may occur even without a three-dimensional (3-D) coincident site lattice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A.P. Sutton:Int. Met. Rev., 1984, vol. 29, pp. 377–402.

    CAS  Google Scholar 

  2. A. Serra and D.J. Bacon:Phil. Mag., 1986, vol. 54, pp. 793–804.

    Article  CAS  Google Scholar 

  3. A. Serra, D.J. Bacon, and R.C. Pond:Acta Metall., 1988, vol. 36, pp. 3183–3203.

    Article  CAS  Google Scholar 

  4. R. Pasianot and E.J. Savino:Phys. Rev. B, 1992, vol. 45, pp. 12704–10.

    Article  CAS  Google Scholar 

  5. A.P. Sutton and V. Vitek:Phil. Trans. R. Soc. London A, 1983, vol. 309, pp. 1–36.

    Article  CAS  Google Scholar 

  6. A.P. Sutton and R.W. Balluffi:Acta Metall., 1987, vol. 35, pp. 2177–2201.

    Article  CAS  Google Scholar 

  7. A.P. Sutton:Acta Metall., 1988, vol. 36, pp. 1291–99.

    Article  CAS  Google Scholar 

  8. A.P. Sutton:Prog. Mater. Sci., 1992, vol. 36, pp. 167–202.

    Article  CAS  Google Scholar 

  9. R. Portier, A. Thalal, and D. Gratias: inLes Joints de Grains Dans les Materiaux, M. Aucouturier, ed., Les Editions Physique, Les Ulis, Cedex, France, 1984.

    Google Scholar 

  10. G. A. Bruggeman, G.H. Bishop, and W.H. Hartt: inThe Nature and Behavior of Grain Boundaries, H. Hu, ed., AIME, New York, NY, 1972.

    Google Scholar 

  11. H. Grimmer and D.H. Warrington:Acta Cryst. A, 1987, vol. 43, pp. 232–43.

    Article  Google Scholar 

  12. F. Chen and A.H. King:Acta Cryst. B, 1987, vol. 43, pp. 416–22.

    Article  Google Scholar 

  13. D. Wolf:J. Phys. (Paris) C4, 1985, vol. 46, pp. 197–211.

    Google Scholar 

  14. D.J. Oh and R.A. Johnson:J. Mater. Res., 1988, vol. 3, pp. 471–78.

    CAS  Google Scholar 

  15. M. Igarashi, K. Khanta, and V. Vitek:Phil. Mag. B, 1991, vol. 63, pp. 603–27.

    CAS  Google Scholar 

  16. D. Farkas, E.J. Savino, P. Chidamabaram, A.F. Voter, D.J. Srolovitz, and S.P. Chen:Phil. Mag. A, 1989, vol. 60, pp. 433–46.

    Article  CAS  Google Scholar 

  17. P. Delavignette:J. Phys. C6, 1982, vol. 43, pp. 1–13.

    Google Scholar 

  18. R.C. Pond:Scripta Metall., 1987, vol. 21, pp. 197–202.

    Article  CAS  Google Scholar 

  19. R.C. Pond, D.J. Bacon, A. Serra, and A.P. Sutton:Metall. Trans. A, 1991, vol. 22, pp. 1185–96.

    Google Scholar 

  20. F. Chen and A.H. King:Phil. Mag., 1988, vol. 57, pp. 431–56.

    CAS  Google Scholar 

  21. N. Rivier:J. Phys. (Paris) C3, 1986, vol. 47, pp. 299–309.

    Google Scholar 

  22. M. Dechomps, F. Baribier, and A. Marrouche:Acta Metall., 1987, vol. 35, pp. 101–07.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Farkas, D. Grain-boundary structures in hexagonal materials: Coincident and near coincident grain boundaries. Metall Mater Trans A 25, 1337–1346 (1994). https://doi.org/10.1007/BF02665467

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02665467

Keywords

Navigation