Skip to main content
Log in

Critical evaluation and optimization of the thermodynamic properties and phase diagrams of the CrO-Cr2O3, CrO-Cr2O3-Al2O3, and CrO-Cr2O3-CaO systems

  • Published:
Journal of Phase Equilibria

Abstract

Available thermodynamic and phase diagram data have been critically assessed for all phases in the CrO-Cr2O3, CrO-Cr2O2-Al2O3, and CrO-Cr2O2-CaO systems from 298 K to above the liquidus temperatures and for oxygen partial pressures ranging from equilibrium with metallic Cr to equilibrium with air in the case of the first two systems and toP O 2 = 10−3 atm for the CrO-Cr2O3-CaO system. All reliable data have been simultaneously optimized to obtain one set of model equations for the Gibbs energy of the liquid slag and all solid phases as functions of composition and temperature. The modified quasichemical model was used for the slag. The models permit phase equilibria to be calculated for regions of composition, temperature, and oxygen potential where data are not available.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Cited References

  1. G. Eriksson, P. Wu, and A.D. Pelton,Calphad, 17, 189–206 (1993).

    Article  Google Scholar 

  2. P. Wu, G. Eriksson, A.D. Pelton, and M. Blander,J. Iron Steel Inst. Jpn., 33, 25–34 (1993).

    Google Scholar 

  3. G. Eriksson and A.D. Pelton,Metall. Trans. B, 24, 795–805 (1993).

    Article  Google Scholar 

  4. G. Eriksson and A.D. Pelton,Metall. Trans. B, 24, 807–816 (1993).

    Article  Google Scholar 

  5. P. Wu, G. Eriksson, and A.D. Pelton,J. Am. Ceram. Soc., 76, 2059–2064 (1993).

    Article  Google Scholar 

  6. P. Wu, G. Eriksson, and A.D. Pelton,J. Am. Ceram. Soc., 76, 2065–2075 (1993).

    Article  Google Scholar 

  7. G. Eriksson, P. Wu, M. Blander, and A.D. Pelton,Can. Metall. Q., 33, 13–22 (1994).

    Article  Google Scholar 

  8. G. Eriksson, A.D. Pelton, E. Woermann, and A. Ender,Ber. Bun-senges. Phys. Chem., in press.

  9. S. Degterov and A.D. Pelton,J. Phase Equilibria, 77(6), 488–494 (1996).

    Article  Google Scholar 

  10. S. Degterov and A.D. Pelton,Metall. Trans., in press.

  11. A.D. Pelton and M. Blander,Proc. Second Int. Symp. Metall. Slag and Fluxes, TMS-AIME, Warrendale, PA, 281–291 (1984).

    Google Scholar 

  12. M. Blander and A.D. Pelton,Proc. Second Int. Symp. Metall. Slags and Fluxes, TMS-AIME, Warrendale, PA, 294–304 (1984).

    Google Scholar 

  13. A.D. Pelton and M. Blander,Metall. Trans. B, 17, 805–815 (1986).

    Article  Google Scholar 

  14. M. Blander and A.D. Pelton,Geochim. Cosmochim. Acta, 51, 85–95 (1987).

    Article  ADS  Google Scholar 

  15. A.D. Pelton and M. Biander,Calphad, 12, 97–108 (1988).

    Article  Google Scholar 

  16. M.L. Kapoor and M.G. Frohberg,Symp. Chem. Metall. Iron and Steel, Sheffield, England, The Institute of Metals, London (1971).

    Google Scholar 

  17. H. Gaye and J. Weifringer,Proc. Second Int. Symp. Metall. Slags and Fluxes, TMS-AIME, Warrendale, PA, 357–376 (1984).

    Google Scholar 

  18. G.W. Toop and C.S. Samis,TMS-AIME, 224, 878 (1962).

    Google Scholar 

  19. P. Wu, Ph.D. Thesis, École Polytechnique, Montréal (1992).

    Google Scholar 

  20. A.D. Pelton, G. Eriksson, and M. Blander,Proc. Third Int. Symp. Metall. Slags and Fluxes, The Institute of Metals, London, 66–69 (1989).

    Google Scholar 

  21. A.D. Pelton and G. Eriksson,Advances in the Fusion of Glass, Proc. First Int. Conf. on Advances in the Fusion of Glass, American Ceramic Society, Westerville, OH, 27.1–29.11 (1988).

    Google Scholar 

  22. A.D. Pelton, W.T. Thompson, C.W. Bale, and G. Eriksson,Advances in Phase Transitions, J.D. Embury and G.R. Purdy, Ed., Pergamon Press, New York, NY, 52–67 (1988).

    Chapter  Google Scholar 

  23. M. Blander, A.D. Pelton, and G. Eriksson,Proc. Fourth Int. Symp. Metall. Slags and Fluxes, Iron Steel Institute of Japan, Tokyo, 56–60 (1992).

    Google Scholar 

  24. JANAFThermochemical Tables, 3rded.,J.Phys. Chem. Ref. Data, 14(1985).

  25. Y. Jeannin, C. Mannerskantz, and F.D. Richardson,TMS-AIME, 227, 300 (1963).

    Google Scholar 

  26. D. Tretyakov and H. Schmalzried,Ben Bunsenges. Phys. Chem., 69, 396 (1965).

    Article  Google Scholar 

  27. N.Y. Toker, L.S. Darken, and A. Muan,Metall. Trans. B, 22, 225–232 (1991).

    Article  Google Scholar 

  28. F.N. Mazandarany and R.D. Pehlke,J. Electrochem. Soc., 121, 711–714 (1974).

    Article  Google Scholar 

  29. H. Davies and W.W. Smeltzer,J. Electrochem. Soc., 121, 543–549 (1974).

    Article  Google Scholar 

  30. A. Dinsdale,Calphad, 15, 317–426 (1991).

    Article  Google Scholar 

  31. J.R. Taylor and A.T. Dinsdale,Z. Metallkd., 81, 354–366 (1990).

    Google Scholar 

  32. G. Banik, T. Schmitt, P. Ettmayer, and B. Lux,Z. Metallkd., 71, 644–645 (1980).

    Google Scholar 

  33. Y.I. Ol'shanskii and V.S. Shlepov,Dokl. Akad. Nauk SSSR, 91, 561–564 (1953).

    Google Scholar 

  34. K.K. Kelley, F.S. Boericke, G.E. Moore, E.H. Huffmann, and W.M. Bangert, U.S. Bur. Mines Tech. Paper No. 662 (1994).

  35. T. Matsui and K. Naito,J. Nucl. Mater., 136, 78–82 (1985).

    Article  ADS  Google Scholar 

  36. E.N. Bunting,Bur. Std. J. Res., 6, 947–949 (1931).

    Article  Google Scholar 

  37. A. Neuhaus, E. Jumpertz, and P. Brenner,Fortschr. Miner., 40, 60 (1963).

    Google Scholar 

  38. D.M. Roy and A.E. Barks,Nature, 235, 118–119 (1972).

    ADS  Google Scholar 

  39. K.T. Jacob,J. Electrochem. Soc., 125, 175–179 (1978).

    Article  Google Scholar 

  40. H.-T.T. Tsai and A. Muan,J. Phase Equilibria, 75, 1412–1415 (1992).

    Google Scholar 

  41. N.D. Chatterjee, H. Leistner, L. Terhart, K. Abraham, and R. Klaska,Am. Mineral, 67, 725–735 (1982).

    Google Scholar 

  42. W. Sitte,Mater. Sci. Monogr., 28A, 451–456 (1985).

    Google Scholar 

  43. T. Sasamoto and T. Sata,Bull. Tokyo last. Technol., 108, 123–139 (1972).

    Google Scholar 

  44. C.O. Hulse, Final Technical Report, Contract No. 0019-74-C-0271 (1975).

  45. A. Muan,High Temp.-High Pmss., 14, 653–660 (1982).

    Google Scholar 

  46. T. Schmitt, G. Banik, and B. Lux,Ber. Deutsche Keram. Ges., 57, 80–83 (1980).

    Google Scholar 

  47. W.F. Ford and W.J. Rees, Appendix by J. White,Trans. Brit. Ceram. Soc., 48, 291–321 (1949).

    Google Scholar 

  48. W.F. Ford and W.J. Rees,Trans. Brit. Ceram. Soc., 47, 207–231 (1948).

    Google Scholar 

  49. W.F. Ford and J. White,Trans. Brit. Ceram. Soc., 48, 417–427 (1949).

    Google Scholar 

  50. V. Danek and T. Licko,Silikaty, 25, 55–60 (1981).

    Google Scholar 

  51. Z. Panek,Silikaty, 25, 169–171 (1981).

    Google Scholar 

  52. A. Kaiser, B. Sommer, and E. Woermann,J. Am. Ceram. Soc., 75, 1463–1471 (1992).

    Article  Google Scholar 

  53. F.P. Glasser and E.F. Osbom,J. Am. Ceram. Soc., 41, 358–367 (1958).

    Article  Google Scholar 

  54. K. Wilhelmi and O. Jonsson,Acta Chem. Scand., 19, 177–184 (1965).

    Article  Google Scholar 

  55. K.T. Adendorif, J.P.R. De Villiers, and GJ. Kruger,J. Am. Ceram. Soc., 75, 1416–1422 (1992).

    Article  Google Scholar 

  56. J.P.R. De Villiers, J. Mathias, and A. Muan,Trans. Inst. Min. Metall., 96 (Sect. C: Mineral Process. Extr. Metall.), C55–62 (1987).

    Google Scholar 

  57. H. von Wartenberg, H.J. Reusch, and E. Saran,Z. Anorg. Allg. Chem., 230, 257–276 (1937).

    Article  Google Scholar 

  58. Ya.I. Ol'shanskii, A.I. Tsvetkov, and V.K. Shlepov,Dokl. Akad. Nauk SSSR, 96, 1007–1009 (1954).

    Google Scholar 

  59. Z. Panek,Silikaty, 20, 1–12 (1976).

    Google Scholar 

  60. A. Muan,Spec. Publ. Geol. Soc. S. Afr., 7, 325–336 (1983).

    Google Scholar 

  61. J.P.R. De Villiers and A. Muan,J. Am. Ceram. Soc., 75, 1333–1341 (1992).

    Article  Google Scholar 

  62. F. Bertaut, P. Blum, and G. Magnano,C. R. Acad. Sci. Paris, 241, 757–759 (1955).

    Google Scholar 

  63. P.M. Hill, H.S. Peiser, and J.R. Rait,Acta Crystallogr., 9, 981–986 (1956).

    Article  Google Scholar 

  64. F.P. Glasser and L.S. Dent,Inorg. Chem., 7, 428–429 (1962).

    Article  Google Scholar 

  65. H.Von Pausch and H.k. Muller-Buschbaum,Z. Anorg. Allg. Chem., 405, 113–118 (1974).

    Article  Google Scholar 

  66. Z. Panek and E. Kanclir,Silikaty, 20, 113–122 (1976).

    Google Scholar 

  67. J..Havlica and Z. Panek,Silikaty, 24, 1–6 (1980).

    Google Scholar 

  68. K.V. Rajagopalan, R. Kalyanaraman, and M. Sundaresan,J. Electrochem. Soc. India, 34, 229–231 (1985).

    Google Scholar 

  69. M.L. Kovba, Yu.Ya. Skolis and S.G. Popov,Zh. Fiz, Khim., 64, 40–44 (1990).

    Google Scholar 

  70. J. Havlica and Z. Panek,Silikaty, 21, 13–18 (1977).

    Google Scholar 

  71. J. Havlica and V. Ambruz,Thermochim. Acta, 93, 337–340 (1985).

    Article  Google Scholar 

  72. M.L. Kovba and Yu.Ya. Skolis,Zh. Fiz. Khim., 61, 330–334 (1987).

    Google Scholar 

  73. G.F. Voronin and S.A. Degterov,Physica C, 176, 387–408 (1991).

    Article  ADS  Google Scholar 

  74. S.A. Degterov and G.F. Voronin,Physica C, 178, 213–220 (1991).

    Article  ADS  Google Scholar 

  75. I. Barin,Thermochemical Data of Pure Substances, VCH, Weinheim, Germany (1989).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Degterov, S., Pelton, A.D. Critical evaluation and optimization of the thermodynamic properties and phase diagrams of the CrO-Cr2O3, CrO-Cr2O3-Al2O3, and CrO-Cr2O3-CaO systems. JPE 17, 476–487 (1996). https://doi.org/10.1007/BF02665994

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02665994

Keywords

Navigation