Skip to main content
Log in

A revision of the Fe-Ni phase diagram at low temperatures (<400 °C)

  • Published:
Journal of Phase Equilibria

Abstract

The low-temperature Fe-Ni phase diagram was assessed experimentally by investigating Fe-Ni regions of meteorites using high resolution analytical electron microscopy techniques. The present phase diagram differs from the available experimental phase diagram based on observations of meteorite structure, but it is consistent with the available theoretical diagram in that α/Ni3Fe equilibrium was found at low temperatures. The a phase containing 3.6 wt.% Ni is in local equilibrium with the γ′ (Ni3Fe) phase containing 65.5 wt.% Ni, while the γ′' (FeNi) phase is present as a metastable phase. The new phase diagram incorporates a monotectoid reaction (γ1 → α + γ2, where (γ1 is a paramagnetic fcc austenite, a is a bcc ferrite, and γ2 is a ferromagnetic fcc austenite) at about 400 °C, a eutectoid reaction (γ2 → α + γ′) at about 345 °C, and a miscibility gap associated with a spinodal region at low temperatures. The miscibility gap is located between 9.0 and 51.5 wt. % Ni at ∼200 °C. The new low-temperature Fe-Ni phase diagram is consistent with all the phases observed in the metallic regions of meteorites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Cited References

  1. P. Leech and C. Sykes, “The Evidence for a Superlattice in Nickel-Iron Alloy Ni3Fe,”Philos. Mag., 27, 742–753 (1939).

    Article  Google Scholar 

  2. J. Paulevé, D. Dautrppe, J. Laugier, and L. Néel, “A New Order-Disorder Transition in Fe-Ni (50-50),”J. Phys., 23, 841–843 (1962).

    Google Scholar 

  3. T. Heumann and G. Karsten, “The Carbonyl Method and Vapor Deposition for Determining Equilibrium Phases at Low Temperatures Taking Iron-Nickel Alloys as an Example,”Arch. Eisenhiittenwes., 34, 781–786 (1963).

    Google Scholar 

  4. B.N. Powell, “Petrology and Chemistry of Mesosiderites-I. Textures and Composition of Nickel-Iron,”Geochem. Cosmochem. Acta, 55, 789–810 (1969).

    Article  ADS  Google Scholar 

  5. W.F. Schlosser, “A Model for the Invar Alloys and the Fe-Ni System,”J. Phys. Chem. Solids, 32, 939–949 (1971).

    Article  ADS  Google Scholar 

  6. G. Cliff and G.W. Lorimer, “The Quantitative Analysis of Thin Specimens,”J. Microsc., 103, 203–207 (1975).

    Article  Google Scholar 

  7. O. Kubaschewski, K. Geiger, and K. Hack, “The Thermochemical Properties of Iron-Nickel Alloys,”Z. Metallkd., 68, 337–341 (1977).

    Google Scholar 

  8. J.F. Petersen, M. Aydin, and J.M. Knudsen, “Mössbauer Spectroscopy of an Ordered Phase (Superstructure) of FeNi in an Iron Meteorite, ”Phys. Lett. A, 62, 192–194 (1977).

    Article  ADS  Google Scholar 

  9. A. Chamberod, M. Roth, and L. Billard, “Small Angle Neutron Scattering Invar Alloys,”J. Magn. Magn. Mater., 7, 101–103 (1978).

    Article  ADS  Google Scholar 

  10. A. Chamberod, J. Laugier, and J.M. Penisson, “Electron Irradia: tion Effects on Iron-Nickel Invar Alloys,”J. Magn. Magn. Mater., 10, 139–144 (1979).

    Article  ADS  Google Scholar 

  11. S.E. Haggerty and B.M. McMahon, “Magnetite-Sulfide-Metal Complexes in the Allende Meteorite,”Geochem. Cosmochem. Acta, 77, 851–870 (1979).

    Google Scholar 

  12. R.S. Clarke, Jr. and E.R.D. Scott, “Tetrataenite-Ordered FeNi, a New Mineral in Meteorites“Amer. Mineral., 65, 624–630 (1980).

    ADS  Google Scholar 

  13. J.K.v. Deen and F.v.d. Woude, “Phase Diagram of the Order-Disorder Transition in Ni3Fe,”J. Phys., 41, C1, 367–368 (1980).

    ADS  Google Scholar 

  14. J.R.C. Guimarães, J. Danon, R.B. Scorzelli, and I.S. Azevedo, “Phase Stability on Iron-Nickel Invar Alloys,”J. Phys. F, Met. Phys., 70, L197–202 (1980).

    Article  Google Scholar 

  15. B.M. McMahon and S.E. Haggerty, “Experimental Studies Bearing on the Magnetite-Alloy-Sulfide Association in the Allende Meteorite: Constraints on the Conditions of Chondrule Formation,”Geochem. Cosmochem. Acta, 14, 1003–1025 (1980).

    Google Scholar 

  16. A.D. Romig, Jr. and J.I. Goldstein, “Determination of the Fe-Ni and Fe-Ni-P Phase Diagrams at Low Temperatures (700 to 300 °C),”Metall. Trans. A, 11, 1151–1159 (1980).

    Article  Google Scholar 

  17. J. Danon, M. Christophe, C. Jehanno, K. Keil, C.B. Gomaes, and R.B. Scorzelli, “Awaruite (Ni3Fe) in the Genomict LL Chondrite Parambu: Formation under High FeO2,”Meteoritics, 16, 305 (1981).

    ADS  Google Scholar 

  18. J.K.v. Deen and F.v.d. Woude, “Phase Diagram of the Order-DisorderTransitioninNi3Fe,”Metall., 29, 1255–1262 (1981).

    Google Scholar 

  19. R.A. Jago, P.E. Clark, and P.L. Rossiter, “The Santa Catharina Meteorite and the Equilibrium State of Fe-Ni Alloys,”Phys. Status Solidi(a), 74, 247–254 (1982).

    Article  ADS  Google Scholar 

  20. O. Kubaschewski,Iron Binary Phase Diagrams, Springer Verlag (1982).

  21. J.F. Albertsen, H.P. Nielsen, and V.F. Buchwald, “On the Fine Structure of Meteoritical Taenite/Tetrataenite and Its Interpretation,”Phys. Scr., 27, 314–320 (1983).

    Article  ADS  Google Scholar 

  22. H. Morita, A. Chamberod, and S. Steinemann, “Electron Irradiation Effects on the Curie Temperature of Fe-Ni Invar Alloys,”J. Phys. F, Met. Phys., 14, 3053–3059 (1984).

    Article  ADS  Google Scholar 

  23. Y.Y. Chuang, K. Hsieh, and Y.A. Chang, “A Thermodynamic Analysis of the Phase Equilibria of the Fe-Ni System above 1200K,”Metall. Trans. A, 17, 1373–1380 (1986).

    Article  Google Scholar 

  24. Y.Y. Chuang, Y.A. Chang, R. Schmid, and J.C. Lin, “Magnetic Contributions to the Thermodynamic Functions of Alloys and the Phase Equilibria ofFe-Ni System below 1200K,”Metall. Trans. A, 77, 1361–1372 (1986).

    Article  Google Scholar 

  25. T. Nagatani, S. Saito, M. Sato, and M. Yamada, “Development of an Ultra High Resolution Scanning Electron Microscope by Means of a Field Emission Source and In-Lens System,”Scanning Microsc., 7, 901–909 (1987).

    Google Scholar 

  26. J. Lin and Y.A. Chang, “Magnetic-Induced Tricritical Points in Alloys,”Metall. Trans. A, 79, 441–446 (1988).

    Article  Google Scholar 

  27. K.B. Reuter, D.B. Williams, and J.I. Goldstein, “Low Temperature Phase Transformations in the Metallic Phases of Iron and Stony Iron Meteorites,”Geochem. Cosmochem. Acta, 52, 617–626 (1988).

    Article  ADS  Google Scholar 

  28. K.B. Reuter, D.B. Williams, and J.I. Goldstein, “Determination of the Fe-Ni Phase Diagram below 400°C,”Metall. Trans. A, 20, 719–725 (1989).

    Article  Google Scholar 

  29. K.B. Reuter, D.B. Williams, and J.I. Goldstein, “Ordering in the Fe-Ni System under Electron Irradiation,”Metall. Trans. A, 20, 711–718 (1989).

    Article  Google Scholar 

  30. G.W. Kellemeyn, A.E. Rubin, and J.T. Wasson, “The Compositional Classification of Chondrites: V. The Karoonda (CK) Group of Carbinaceous Chondrites,”Geochem. Cosmochem. Acta, 55, 881–891 (1991).

    Article  ADS  Google Scholar 

  31. A.E. Rubin, “Euhedral Awaruite in the Allende Meteorite: Implications for the Origin of Awaruite- and Magnetite-Bearing Nodules inCV3 Chondrites,”Amer. Mineral., 76, 1356–1362 (1991).

    Google Scholar 

  32. L.J. Swartzendruber, V.P. Itkin, and C.B. Alcock, “The Fe-Ni (Iron-Nickel) System,”J. Phase Equilibria, 12, 288–312 (1991).

    Article  Google Scholar 

  33. C.W. Yang, D.B. Williams, and J.I. Goldstein, “New Cooling Rate Indicator for Metal Particles in Meteorites,”Meteoritics, 29, 1529–1530 (1994).

    Google Scholar 

  34. J. Zhang, D.B. Williams, and J.I. Goldstein, “Decomposition of Fe-Ni Martensite: Implications for the Low-Temperature (<500°C) Fe-Ni Phase Diagram,”Met. Mat. Trans. A, 25, 1627–1637 (1994).

    Article  Google Scholar 

  35. X. Hua, D.D. Eisenhour, and P.R. Buseck, “Cobalt-Rich, Nickel-Poor Metal (Wairauite) in the Ningqiang Carbonaceous Chondrite,”Meteoritics, 30, 106–109 (1995).

    Article  ADS  Google Scholar 

  36. D.G. Rancourt and R.B. Scorzelli, “Low-Spin γ-Fe-Ni γ1s) Proposed as a New Mineral in Fe-Ni-Bearing Meteorites: Epitaxial Intergrowth of γIS and Tetrataenite as a Possible Equilibrium State at -20-40at.%Ni,”J. Magn. Magn. Mater., 750, 30–36 (1995).

    Article  ADS  Google Scholar 

  37. C.W. Yang, D.B. Williams, and J.I. Goldstein, “Low Temperature Phase Decomposition in Meteoritic Metal—Part I: Microstructure and Microchemistry of Metallic Phases,” submitted toGeochem. Cosmochem. Acta (1996).

  38. C.W. Yang, D.B. Williams, and J.I. Goldstein, “Low Temperature Phase Decomposition in Meteoritic Metal—Part II: Thermodynamic and Kinetic Considerations of Microstructural Development,” submitted toGeochem. Cosmochem. Acta (1996).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, C.W., Williams, D.B. & Goldstein, J.I. A revision of the Fe-Ni phase diagram at low temperatures (<400 °C). JPE 17, 522–531 (1996). https://doi.org/10.1007/BF02665999

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02665999

Keywords

Navigation