Skip to main content
Log in

Effect of oxidation kinetics on the near threshold fatigue crack growth behavior of a nickel base superalloy

  • Published:
Metallurgical Transactions A Aims and scope Submit manuscript

Abstract

The influence of oxidation kinetics on the near threshold fatigue crack growth behavior of a nickel base precipitation hardened superalloy was studied in air from 427° to 649 °C. The tests were conducted at 100 Hz and at load ratios of 0.1 and 0.5. The threshold ΔK values were found to increase with temperature. This behavior is attributed to oxide deposits that form on the freshly created fracture surfaces which enhance crack closure. As determined from secondary ion mass spectrometry, the oxide thickness was uniform over the crack length and was of the order of the maximum crack tip opening displacement at threshold. Oxidation kinetics were important in thickening the oxide on the fracture surfaces at elevated temperatures, whereas at room temperature, the oxide deposits at near threshold fatigue crack growth rates and at low load ratios were thickened by an oxide fretting mechanism. The effect of fracture surface roughness-induced crack closure on the near threshold fatigue crack growth behavior is also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. K. Vasudevan and S. Suresh:Metall. Trans. A, 1982, vol. 13A, p. 2271.

    Google Scholar 

  2. R.O. Ritchie:Int. Met. Rev., 1979, vol. 20, p. 205.

    Google Scholar 

  3. R.P. Wei and G.W. Simmons:Int. J. Fract., 1981, vol. 17, p. 235.

    Article  CAS  Google Scholar 

  4. P.K. Liaw, S.J. Hudak, and J. K. Donald:Metall. Trans. A, 1982, vol. 13A, p. 1633.

    Google Scholar 

  5. S. Suresh, I. G. Palmer, and R. E. Lewis:Fatigue Eng. Mater. Struct., 1982, vol. 5, p. 133.

    Article  CAS  Google Scholar 

  6. S. Suresh, G. F. Zamiski, and R. O. Ritchie:Metall. Trans. A, 1981, vol. 12A, p. 1435.

    Google Scholar 

  7. C.H. Wells:Fatigue and Microstructure, ASM Materials. Science Seminar, St. Louis, MO, October 1978, ASM, Metals Park, OH, p. 307.

    Google Scholar 

  8. R.O. Ritchie and S. Suresh:Metall. Trans. A, 1982, vol. 13A, p. 937.

    Google Scholar 

  9. S. Suresh and R.O. Ritchie:Metall. Trans. A, 1982, vol. 13A, p. 1627.

    Google Scholar 

  10. J.C. Radon, C.M. Branco, and L. E. Culver:Int. J. Fract., 1976, vol. 12, p. 467.

    Google Scholar 

  11. F. P. Ford and P. W. Emigh: National Association of Corrosion Engineers Int. Corrosion Forum, proceedings of NACE conference, March 1982, Houston, TX, Paper No. 248.

  12. L. K. L. Tu and B. B. Seth:J. Test. Eval., 1978, vol. 6, p. 66.

    CAS  Google Scholar 

  13. W. Hoffelner and M. O. Speidel:Corrosion and Mechanical Stress at High Temperature, proceedings of Symposium, V. Guttmann and M. Merz, eds., Applied Science, 1981, p. 275.

  14. P. K. Liaw, J. Anello, and J. K. Donald:Metall. Trans. A, 1982, vol. 13A, p. 2177.

    Google Scholar 

  15. P. C. Paris, R. J. Bucci, E. T. Wessel, W. G. Clark, and T. R. Mager:Stress Analysis and Growth of Cracks, ASTM STP 513, Amer. Soc. Testing and Mater., 1972, p. 141.

  16. R. P. Skelton and J. R. Haigh:Mater. Sci. Eng., 1970, vol. 36, p. 17.

    Google Scholar 

  17. M. Clavel and A. Pineau:Metall. Trans. A, 1978, vol. 9A, p. 471.

    CAS  Google Scholar 

  18. J.L. Yuen: Ph.D. Dissertation, 1982, Stanford University, Stanford, CA.

    Google Scholar 

  19. H.H. Smith and D. J. Michel:Ductility and Toughness Considerations in Elevated Temperature Service, proceedings of ASME Winter Meeting, ASME MPC-8, G. V. Smith, ed., ASME, New York, NY, 1978, p. 225.

    Google Scholar 

  20. D. A. Jablonski, J. V. Carisella, and R. M. Pelloux:Metall. Trans. A, 1977, vol. 8A, p. 1893.

    CAS  Google Scholar 

  21. L. A. James:At. Energy Rev., 1976, no. 14, p. 37.

    Google Scholar 

  22. J. F. Knott:Fundamentals of Fracture Mechanics, Halsted Press, John Wiley and Sons, New York, NY, 1979

    Google Scholar 

  23. L. F. Coffin:Creep-Fatigue Environment Interactions, proceedings of AIME Symposium, R.M. Pelloux and N.S. Stoloff, eds., 1980, p. 1.

  24. J. Reuchet and L. Remy:Metall. Trans. A, 1983, vol. 14A, p. 141.

    Google Scholar 

  25. D. J. Duquette and M. Gell:Metall. Trans., 1971, vol. 2, p. 1325.

    CAS  Google Scholar 

  26. J. D. Frandsen, N. E. Paton, and H. L. Marcus:Metall. Trans., 1974, vol. 5, p. 1655.

    Article  CAS  Google Scholar 

  27. S. Antolovich, R. Baur, and S. Liu:Superalloys 1980, Fourth Int. Symposium on Superalloys, J.K. Tien,et al., eds., ASM, Metals Park, OH, 1980, p. 605.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Formerly with General Electric Company, Advanced Nuclear Technology Operation, Sunnyvale, CA 94086.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yuen, J.L., Roy, P. & Nix, W.D. Effect of oxidation kinetics on the near threshold fatigue crack growth behavior of a nickel base superalloy. Metall Trans A 15, 1769–1775 (1984). https://doi.org/10.1007/BF02666360

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02666360

Keywords

Navigation