Skip to main content
Log in

Cleavage fracture in pearlitic eutectoid steel

  • Mechanical Behavior
  • Published:
Metallurgical Transactions A Aims and scope Submit manuscript

Abstract

The effect of microstructure on flow and fracture properties of fully pearlitic steel has been studied by independently varying the prior austenite grain size and the pearlite interlamellar spacing through appropriate heat treatments. The yield strength is independent of the prior austenite grain size but increases as the interlamellar spacing or the temperature decreases. The microstructural dependence can be explained by using a model which assumes that yielding is controlled by dislocation motion in the ferrite lamellae. The critical tensile stress for cleavage fracture is found to be independent of prior austenite grain size, increasing as the interlamellar spacing decreases. The cleavage fracture stress is independent of temperature for fine pearlite but increases as the temperature decreases for coarse pearlite. The associated fracture in blunt notch specimens initiates at inclusions beneath notch surface near the location of maximum tensile stress. From the size of such inclusions, the effective surface energy for cleavage fracture can be directly calculated and is found to be independent of temperature and prior austenite grain size but to increase as the interlamellar spacing decreases, from about 5 to 13 J/m2 for the range of microstructures and temperatures used in this study. Additional measurements of the effective surface energy and further theoretical analyses of the cleavage process are needed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. J. M. Hyzak and I. M. Bernstein:Metall. Trans. A, 1976, vol. 7A, pp. 1217–24.

    CAS  Google Scholar 

  2. Y. J. Park and I. M. Bernstein:Metall. Trans. A, 1979, vol. 10A, pp. 1653–64.

    CAS  Google Scholar 

  3. G. T. Gray, III: Ph.D. Thesis, Carnegie-Mellon University, Pittsburgh, PA, 1981.

  4. A. Brownrigg, P. Curcio, and R. Boelen:Metallography, 1975, vol. 8, pp. 529–33.

    Article  CAS  Google Scholar 

  5. Annual Book of ASTM Standards, ASTM E 122-77, ASTM, Philadelphia, PA, 1979, vol. 11, pp. 205–08.

  6. J. R. Griffiths and D. R. J. Owen:J. Mech. Phys. Solids, 1971, vol. 19, pp. 419–31.

    Article  Google Scholar 

  7. J. J. Lewandowski: Ph.D. Thesis, Carnegie-Mellon University, Pittsburgh, PA, 1983.

  8. J. H. Gross and R. D. Stout:Weld. Res. J., 1951, vol. 30, pp. 481s-88s.

    Google Scholar 

  9. J. Flugge, W. Heller, E. Stolte, and W. Dahl:Arch. Eisenhuettenwes, 1976, vol. 47, pp. 635–40.

    Google Scholar 

  10. A. R. Marder and B. L. Bramfitt:Metall. Trans. A, 1976, vol. 7A, pp. 365–72.

    CAS  Google Scholar 

  11. J. Gil Sevillano: inStrength of Metals and Alloys, ICSMA 5, P. Haasen, ed., Aachen, Federal Republic of Germany, Pergamon Press, New York, NY, 1979, pp. 819–24.

    Google Scholar 

  12. B. Karlsson and G. Linden:Mater. Sci. Eng., 1975, vol. 17, pp. 153–64.

    Article  CAS  Google Scholar 

  13. T. Takahashi and M. Nagumo:Trans. JIM, 1970, vol. 11, pp. 113–19.

    CAS  Google Scholar 

  14. K. Kuhne: D.-Ing. Thesis, Technical University of Aachen, Aachen, Federal Republic of Germany, 1983.

  15. F. P. L. Kavishe and T. J. Baker:Mater. Sci. Tech., 1986, vol. 2, pp. 583–88.

    CAS  Google Scholar 

  16. A. A. Griffith:Phil. Trans. R. Soc. London, 1920, vol. 221A, pp. 163–98.

    Google Scholar 

  17. A. A. Griffith:Proc. 1st Int. Cong. Appl. Math., Delft, The Netherlands, 1924, pp. 55–62.

  18. R. A. Sack:Proc. Phys. Soc. London, 1946, vol. 58, pp. 729–34.

    Article  Google Scholar 

  19. H. L. Ewalds and R. J. H. Wanhill:Fracture Mechanics, Edward Arnold Ltd., London, 1984, p. 43.

    Google Scholar 

  20. S. Dowdy and S. Wearden:Statistics for Research, John Wiley & Sons, New York, NY, 1983, p. 185.

    Google Scholar 

  21. A. T. Price, H. A. Holl, and A. P. Greenough:Acta Metall., 1964, vol. 12, pp. 49–58.

    Article  CAS  Google Scholar 

  22. E. D. Hondros:Proc. Roy. Soc. London, 1965, vol. 286A, pp. 479–92.

    Google Scholar 

  23. D.J. Alexander: Ph.D. Thesis, Carnegie-Mellon University, Pittsburgh, PA, 1984.

  24. D. J. Alexander and I. M. Bernstein: inPhase Transformations in Ferrous Alloys, A. R. Marder and J. I. Goldstein, eds., TMS-AIME, Warrendale, PA, 1984, pp. 243–57.

    Google Scholar 

  25. H. Sunwoo, M. E. Fine, M. Meshii, and D. H. Stone:Metall. Trans. A, 1982, vol. 13A, pp. 2035–47.

    Google Scholar 

  26. W. B. Morrison:Trans. ASM, 1966, vol. 59, pp. 824–41.

    CAS  Google Scholar 

  27. G. Langford and M. Cohen:Trans. ASM, 1969, vol. 62, pp. 623–34.

    CAS  Google Scholar 

  28. G. Langford and M. Cohen:Metall. Trans., 1970, vol. 1, pp. 1478–80.

    CAS  Google Scholar 

  29. D. Kuhlmann-Wilsdorf:Metall. Trans., 1970, vol. 1, pp. 3173–79.

    Google Scholar 

  30. S. Karashima and T. Sakuma:Trans. JIM, 1968, vol. 9, pp. 63–72.

    CAS  Google Scholar 

  31. M. F. Ashby:Acta Metall., 1966, vol. 14, pp. 679–81.

    Article  CAS  Google Scholar 

  32. G. Y. Chin: inWork Hardening in Tension and Fatigue, A. W. Thompson, ed., TMS-AIME, Warrendale, PA, 1977, pp. 45–66.

    Google Scholar 

  33. A. Kelly and R. B. Nicholson:Progress Mater. Sci., 1963, vol. 10, pp. 149–391.

    Google Scholar 

  34. R. L. Fleischer:Acta Metall., 1960, vol. 8, pp. 598–604.

    Article  CAS  Google Scholar 

  35. H. A. Lequear and J. D. Lubahn:Weld. Res. J., 1951, vol. 30, pp. 585–91.

    Google Scholar 

  36. J. N. Robinson and A. S. Tetelman: inFracture Toughness and Slow-Stable Cracking, ASTM STP 559, ASTM, Philadelphia, PA, 1974, pp. 139–58.

    Google Scholar 

  37. J. N. Robinson and A. S. Tetelman:Int. J. Fract. Mech., 1975, vol. 11, pp. 453–65.

    Google Scholar 

  38. G. Prantl:Eng. Fract. Mech., 1979, vol. 11, pp. 431–42.

    Article  Google Scholar 

  39. R. A. Mayville and I. Finnie:Trans. ASME, J. Eng. Mater. Tech., 1982, vol. 104, pp. 200–06.

    Article  Google Scholar 

  40. D. A. Porter, K. E. Easterling, and G. D. W. Smith:Acta Metall., 1978, vol. 26, pp. 1405–22.

    Article  CAS  Google Scholar 

  41. J. J. Lewandowski and A. W. Thompson:Metall. Trans. A, 1986, vol. 17A, pp. 1769–86.

    CAS  Google Scholar 

  42. G. R. Irwin: inFracture of Metals, ASM, Cleveland, OH, 1948, pp. 147–66.

    Google Scholar 

  43. E. Orowan:Rep. Prog. Phys, 1948–49, vol. 12, pp. 185–232.

    Article  Google Scholar 

  44. E. Smith: inPhysical Basis of Yield and Fracture, A. C. Strickland, ed., The Institute of Physics and the Physical Society, London, 1966, pp. 36–46.

    Google Scholar 

  45. J. F. Knott: inAtomistics of Fracture, R. M. Latanision and J. R. Pickens, eds., Plenum Press Ltd., New York, NY, 1983, pp. 209–34.

    Google Scholar 

  46. U. Lindborg:Trans. ASM, 1968, vol. 61, pp. 500–04.

    CAS  Google Scholar 

  47. J. J. Lewandowski and A. W. Thompson:Acta Metall., 1987, vol. 35, pp. 1453–62.

    Article  CAS  Google Scholar 

  48. J. F. Knott: inFracture 77, D. M. R. Taplin, ed., ICF4, University of Waterloo Press, Waterloo, ON, 1977, vol. 1, pp. 61–92.

    Google Scholar 

  49. D. A. Curry and J. F. Knott:Metal Sci., 1978, vol. 12, pp. 511–14.

    Article  CAS  Google Scholar 

  50. D. A. Curry:Metal Sci., 1980, vol. 14, pp. 319–26.

    Article  CAS  Google Scholar 

  51. J. H. Tweed and J. F. Knott: inFracture and the Role of Microstructure, ECF, 4, Leoben, EMAS Ltd., Worley, United Kingdom, 1982, vol. 1, pp. 127–34.

    Google Scholar 

  52. J. H. Tweed and J. F. Knott:Metal Sci., 1983, vol. 17, pp. 45–54.

    Article  Google Scholar 

  53. D. E. McRobie: Ph.D. Thesis, University of Cambridge, Cambridge, United Kingdom, 1985.

  54. M. K. Veistinen and V. K. Lindroos:Scripta Metall., 1984, vol. 18, pp. 185–88.

    Article  CAS  Google Scholar 

  55. C. J. McMahon, Jr. and V. Vitek:Acta Metall., 1979, vol. 27, pp. 507–13.

    Article  CAS  Google Scholar 

  56. M. L. Jokl, V. Vitek, and C. J. McMahon, Jr.:Acta Metall., 1980, vol. 28, pp. 1479–88.

    Article  Google Scholar 

  57. A. S. Teleman: inFracture of Solids, D. C. Drucker and J. J. Gilman, eds., Gordon and Breach Science Publishers, New York, NY, 1963, pp. 461–501.

    Google Scholar 

  58. K. Wallin, T. Saario, and K. Torronen:Metal Sci., 1984, vol. 18, pp. 13–16.

    Article  CAS  Google Scholar 

  59. D. K. Felbeck and E. Orowan:Weld. Res. J., 1955, vol. 34, pp. 570s-75s.

    Google Scholar 

  60. L. C. Chang:J. Mech. Phys. Solids, 1955, vol. 3, pp. 212–17.

    Article  Google Scholar 

  61. E. P. Klier:Trans. ASM, 1951, vol. 43, pp. 935–52.

    Google Scholar 

  62. E. O. Hall:J. Mech. Phys. Solids, 1953, vol. 1, pp. 227–33.

    Article  Google Scholar 

  63. R. G. Hoagland, A. R. Rosenfield, and G. T. Hahn:Metall. Trans., 1972, vol. 3, pp. 123–36.

    CAS  Google Scholar 

  64. E. Smith and J. T. Barnby:Metal Sci. J., 1967, vol. 1, pp. 1–4.

    Article  CAS  Google Scholar 

  65. E. Smith and J. T. Barnby:Metal Sci. J., 1967, vol. 1, pp. 56–64.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

D.J. ALEXANDER, formerly of Carnegie Mellon University

I. M. BERNSTEIN, formerly of Carnegie Mellon University

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alexander, D.J., Bernstein, I.M. Cleavage fracture in pearlitic eutectoid steel. Metall Trans A 20, 2321–2335 (1989). https://doi.org/10.1007/BF02666667

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02666667

Keywords

Navigation