Skip to main content
Log in

Vacuum refining copper melts to remove bismuth, arsenic, and antimony

  • Published:
Metallurgical Transactions B Aims and scope Submit manuscript

Abstract

Experiments were carried out on 35 kg melts of doped cathode copper and anode copper in a 3 m3, 150 kW vacuum induction furnace. Rates of removal of bismuth, arsenic, and antimony were measured over temperature and pressure ranges of 1450 to 1610 K and 3 to 30 pascals, respectively. Bismuth removal was found to be rapid: 1 to 18 x 10-5 m/s. Arsenic and antimony removal were quite slow: 0.2 to 3 x 10-5 and 0.1 x 10-5 m/s, respectively, and evaporation controlled rates of refining. It is shown that, at typical concentrations of these elements in copper, monatomic evaporation is the predominant evaporation mechanism. An expression for the melt phase mass transport rate coefficient is developed from Machlin’s model. In this expression, melt diffusion is a function of melt temperature, and melt surface velocity is a function of the square root of melt surface area to volume ratio and the square of melt temperature, i.e.: it = 1.11 x 10-7[(A/V)/]1/4Tr1/2 exp(-2515/T). This coefficient is used to examine rate control in previous small scale studies and in the present and previous pilot scale studies. The gas phase mass transport coefficient is found to be proportional to the overpressure ratio defined as: total initial melt vapor pressure/chamber pressure, and is also found to be dependent on the geometry of the gas space immediately above the melt.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. O. Winkler and R. Bakish:Vacuum Metallurgy, Elsevier, NY, 1974, ch. 1.

  2. R. Ohno:Metall. Trans. B, 1976, vol. 7B, pp. 647–53.

    CAS  Google Scholar 

  3. R. Harris and W. G. Davenport:Can. Met. Q., 1979, vol. 18, pp. 303–11.

    CAS  Google Scholar 

  4. D. Danovitch: M. Eng. Thesis, McGill University, Montreal, 1982.

    Google Scholar 

  5. E. Ozberk and R. I. L. Guthrie:Proc. 6th International Vacuum Metallurgy Conference, G.K. Blatt and R. Schlatter, eds., San Diego, CA, April 1979, American Vacuum Society, New York, NY, pp. 248–67.

    Google Scholar 

  6. R. G. Ward:JISI, 1963, vol. 201, pp. 11–15.

    CAS  Google Scholar 

  7. R. Ohno:Liquid Metals Chemistry and Physics, S.Z. Beer, ed., Marcel Decker, New York, NY, 1972, pp. 38–79.

    Google Scholar 

  8. a,b. F. D. Richardson:Physical Chemistry of Melts in Metallurgy, Academic Press, London, 1974, vols. 1 and 2, a: pp. 483–87; b: pp. 1-14.

    Google Scholar 

  9. M. Olette:Physical Chemistry of Process Metallurgy, Part 2, G. R. St-Pierre, ed., Interscience, New York, NY, 1961, pp. 1065–87.

    Google Scholar 

  10. D. C. Lynch:Metall. Trans. B, 1980, vol. 11B, pp. 623–29.

    CAS  Google Scholar 

  11. R. Harris: Ph.D. Thesis, McGill University, Montreal, 1980.

    Google Scholar 

  12. O. Knacke and I. N. Stranski:Progress in Metal Physics, B. Chalmers and R. King, eds., Pergamon, New York, NY, 1956, pp. 181–233.

    Google Scholar 

  13. I. Langmuir:J. Am. Chem. Soc., a: 1914, vol. 36, p. 1708; b: 1915, vol. 37, p. 415; c: 1916, vol. 38, pp. 1145-15.

    Article  CAS  Google Scholar 

  14. M. Knudsen:Ann. Physic, Folge 2, a: vol. 31, p. 205; b: vol. 32, p. 890; c: vol. 33, p. 14; d: vol. 34, p. 1910.

  15. E. S. Machlin:Trans. TMS-AIME, 1960, vol. 218, pp. 314–26.

    CAS  Google Scholar 

  16. W. G. Davenport, A. V. Bradshaw, and F. D. Richardson:JISI, 1967, vol. 25, p. 1034.

    Google Scholar 

  17. J. Szekely, C. W. Chang, and W. E. Johnson:Metall. Trans. B, 1977, vol. 8B, pp. 514–17.

    CAS  Google Scholar 

  18. T. R. A. Davey:J. Metals, 1953, vol. 197, pp. 991–96.

    Google Scholar 

  19. T. R. A. Davey:Vacuum, 1962, vol. 12, pp. 83–95.

    Article  CAS  Google Scholar 

  20. T. R. A. Davey:Vacuum, 1964, vol. 14, pp. 227–30.

    Article  Google Scholar 

  21. R. Harris and W. G. Davenport:Metall. Trans. B, a: 1982, vol. 13B, pp. 581–88; b: 1982, vol. 13B, pp. 589-91.

    CAS  Google Scholar 

  22. H. Kametani and C. Yamauchi: Trans.JIM, 1972, vol. 13, pp. 13–20.

    CAS  Google Scholar 

  23. R. Bryan, D. M. Pollard, and G. M. Willis:Australia-Japan Extractive Metallurgy Symp., Australasian Inst. Min. Met., Parkville, Vic., 1980, pp. 439–48.

    Google Scholar 

  24. R. Ohno:Trans. JIM, 1977, vol. 18, pp. 232–38.

    CAS  Google Scholar 

  25. L. Komorova:Hutnicke Listy, 1973, vol. 8, pp. 577–82 (translation: BISI 12425, The Metals Society, London, UK).

    Google Scholar 

  26. F. N. Streltsov, E. G. Trankovski, and O. D. Moldaviskii:Tsvetyne Metally (Non-Ferrous Metals), August 1973, vol. 8, pp. 40–43.

    Google Scholar 

  27. M. Kameda and A. Yasawa:Tohoku Diagaku Senko Seiren Kenkyusho Iho, 1963, vol. 19, pp. 57–68.

    CAS  Google Scholar 

  28. H. Salomon de Friedburg and W. G. Davenport:Met. Soc. CIM, Ann. Vol., 1977, pp. 225–31.

  29. V. V. Golovko and R. A. Isakova:Trans. Inst. Met. i Obogashch. Akad. Nauk Kaz. SSR, 1965, vol. 13, pp. 32–37.

    CAS  Google Scholar 

  30. G. V. Kim and A. N. Kvyatkovskii:Tr. Altaisk Gorno-Met. Nauchn-Issledlnst., Akad. Nauk. Kaz. SSR, 1963, vol. 14, pp. 86–89.

    CAS  Google Scholar 

  31. T. Azakami and A. Yasawa:Can. Met. Q., 1976, vol. 15, pp. 111–21.

    CAS  Google Scholar 

  32. S. Arac and G. H. Geiger:Metall. Trans. B, 1981, vol. 12B, pp. 569–78.

    CAS  Google Scholar 

  33. G. K. Sigworth and J. F. Elliot:Can. Met. Q., 1974, vol. 13, pp. 455–61.

    CAS  Google Scholar 

  34. O. Kubashewski and C. B. Alcock:Metallurgical Thermochemistry, 5th edition, Pergamon, Oxford, 1979, pp. 358–77.

    Google Scholar 

  35. R. Hultgren, P. D. Desai, D. T. Hawkins, M. Gleiser, and K. K. Kelly:Selected Values of the Thermodynamic Properties of Binary Alloys, ASM, Metals Park, OH, 1973, pp. 247–52.

    Google Scholar 

  36. R. Harris, R. McClincy, and E. F. Rebling: Paper Selection No. A83-19, 1983, TMS-AIME, Warrendale, PA, pp. 1–7.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Harris, R. Vacuum refining copper melts to remove bismuth, arsenic, and antimony. Metall Trans B 15, 251–257 (1984). https://doi.org/10.1007/BF02667328

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02667328

Keywords

Navigation