Skip to main content
Log in

The mechanical stability of austenite and cryogenic toughness of ferritic Fe-Mn-AI Alloys

  • Published:
Metallurgical Transactions A Aims and scope Submit manuscript

Abstract

In an attempt to understand the role of retained austenite on the cryogenic toughness of a ferritic Fe-Mn-AI steel, the mechanical stability of austenite during cold rolling at room temperature and tensile deformation at ambient and liquid nitrogen temperature was investigated, and the microstructure of strain-induced transformation products was observed by transmission electron microscopy (TEM). The volume fraction of austenite increased with increasing tempering time and reached 54 pct after 650 °C, 1-hour tempering and 36 pct after 550 °C, 16-hour tempering. Saturation Charpy impact values at liquid nitrogen temperature were increased with decreasing tempering temperature, from 105 J after 650 °C tempering to 220 J after 550 °C tempering. The room-temperature stability of austenite varied significantly according to the + γ) region tempering temperature;i.e., in 650 °C tempered specimens, 80 to 90 pct of austenite were transformed to lath martensite, while in 550 °C tempered specimens, austenite remained untransformed after 50 pct cold reductions. After tensile fracture (35 pct tensile strain) at -196 °C, no retained austenite was observed in 650 °C tempered specimens, while 16 pct of austenite and 6 pct of e-martensite were observed in 550 °C tempered specimens. Considering the high volume fractions and high mechanical stability of austenite, the crack blunting model seems highly applicable for improved cryogenic toughness in 550 °C tempered steel. Other possible toughening mechanisms were also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Jin, J.W. Morris, Jr., and V.F. Zackay:Metall. Trans. A, 1975, vol. 6A, pp. 141–49.

    Article  Google Scholar 

  2. S.K. Hwang, S. Jin, and J.W. Morris, Jr.:Metall. Trans. A, 1975, vol. 6A, pp. 2015–21.

    Article  CAS  Google Scholar 

  3. C.K. Syn, S. Jin, and J.W. Morris, Jr.:Metall. Trans. A, 1976, vol. 7A, pp. 1827–32.

    Article  CAS  Google Scholar 

  4. P. Pahuta, Z. Janik, L. Hyspecka, and K. Mazanec:Trans. ISIJ, 1986, vol. 26, pp. 649–54.

    Article  CAS  Google Scholar 

  5. J.I. Kim, C.K. Syn, and J.W. Morris, Jr.:Metall. Trans. A, 1983, vol. 14A, pp. 93–103.

    Article  Google Scholar 

  6. J.D. Bolton, E.R. Petty, and G.B. Allen:Metall. Trans. A, 1971, vol. 2A, pp. 2915–23.

    Article  Google Scholar 

  7. M.J. Schanfein, M.J. Yokota, V.F. Zackay, E.R. Parker, and J.W. Morris, Jr.: ASTM STP 579, ASTM, Philadelphia, PA, 1975, pp. 361–77.

  8. S.K. Hwang and J.W. Morris, Jr.:Metall. Trans. A, 1979, vol. 10A, pp. 545–55.

    Article  CAS  Google Scholar 

  9. M. Niikura and J.W. Morris, Jr.:Metall. Trans. A, 1980, vol. 11A, pp. 1531–40.

    Article  CAS  Google Scholar 

  10. S.W. Lee and H.-C. Lee:Advan. Cryogenic Eng., 1990, vol. 36B, pp. 1347–54.

    Google Scholar 

  11. Z. Nishiyama:Martensitic Transformation, Academic Press, New York, NY, 1978, p. 49.

    Google Scholar 

  12. C.K. Syn, B. Fultz, and J.W. Morris, Jr.:Metall. Trans. A, 1978, vol. 9A, pp. 1635–40.

    Article  CAS  Google Scholar 

  13. P.M. Kelly:Acta Metall., 1965, vol. 13, pp. 635–46.

    Article  CAS  Google Scholar 

  14. J.S. Bowles and J.K. Mackenzie:Acta Metall., 1954, vol. 2, pp. 129–37.

    Article  CAS  Google Scholar 

  15. H.M. Otte:Acta Metall., 1957, vol. 5, pp. 614–27.

    Article  CAS  Google Scholar 

  16. B. Cina:J. Iron Steel Inst., 1954, vol. 177, pp. 406–22.

    Google Scholar 

  17. J.A. Venables:Phil. Mag., 1962, vol. 7, pp. 35–44.

    Article  Google Scholar 

  18. R. Lagneborg:Acta Metall., 1964, vol. 12, pp. 823–43.

    Article  CAS  Google Scholar 

  19. J.F. Breedis and W.D. Robertson:Acta Metall., 1962, vol. 10, pp. 1077–88.

    Article  CAS  Google Scholar 

  20. H. Schumann:Arch. Eisenhuttenwes., 1969, vol. 40, pp. 1027–37.

    CAS  Google Scholar 

  21. L.I. Lysak, I.B. Goncharenko, and B.I. Nikolin:Fiz. Metall. Metalloved., 1973, vol. 36 (1), pp. 97–101.

    CAS  Google Scholar 

  22. P.C.J. Gallagher:Metall. Trans. A, 1970, vol. 1A, pp. 2429–61.

    Article  Google Scholar 

  23. T. Ericsson:Acta Metall., 1966, vol. 14, pp. 853–65.

    Article  CAS  Google Scholar 

  24. H.J. Rack and David Kalish:Metall. Trans. A, 1971, vol. 2A, pp. 3011–20.

    Article  Google Scholar 

  25. C.N. Ahlquisf.Acta Metall., 1975, vol. 23, pp. 239–43.

    Article  Google Scholar 

  26. H. Haga:Trans. Iron Steel Inst. Jpn., 1973, vol. 13, pp. 141–44.

    Article  CAS  Google Scholar 

  27. K.J. Kim and L.H. Schwartz:Mater. Sci. Eng., 1978, vol. 33, pp. 5–20.

    Article  CAS  Google Scholar 

  28. B. Fultz and J.W. Morris, Jr.:Metall. Trans. A, 1985, vol. 16A, pp. 2251–56.

    Article  CAS  Google Scholar 

  29. D. Frear and J.W. Morris, Jr.:Metall. Trans. A, 1986, vol. 17A, pp. 243–52.

    Article  CAS  Google Scholar 

  30. B. Fultz, J.I. Kim, Y.H. Kim, G.O. Fior, and J.W. Morris, Jr.:Metall. Trans. A, 1985, vol. 16A, pp. 2237–49.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Formerly Graduate Student, Seoul National University.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, S.W., Lee, HC. The mechanical stability of austenite and cryogenic toughness of ferritic Fe-Mn-AI Alloys. Metall Trans A 24, 1333–1343 (1993). https://doi.org/10.1007/BF02668201

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02668201

Keywords

Navigation