Skip to main content
Log in

Decomposition of Fe-Ni martensite: Implications for the low-temperature (≤500 °C) Fe-Ni phase diagram

  • Transformation
  • Transformations
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The low-temperature (<500 °C) decomposition of Fe-Ni martensite was studied by aging martensitic Fe-Ni alloys at temperatures between 300 °C and 450 °C and by measuring the composition of the matrix and precipitate phases using the analytical electron microscope (AEM). For aging treatments between 300 °C and 450 °C, lath martensite in 15 and 25 wt pct Ni alloys decomposed with γ [face-centered cubic (fcc)] precipitates forming intergranularly, and plate martensite in 30 wt pct Ni alloys decomposed with γ (fcc) precipitates forming intragranularly. The habit plane for the intragranular precipitates is {111}fcc parallel to one of the {110}bcc planes in the martensite. The compositions of the γ intergranular and intragranular precipitates lie between 48 and 58 wt pct Ni and generally increase in Ni content with decreasing aging temperature. Diffusion gradients are observed in the matrix α [body-centered cubic (bcc)] with decreasing Ni contents close to the martensite grain boundaries and matrix/precipitate boundaries. The Ni composition of the matrix α phase in decomposed martensite is significantly higher than the equilibrium value of 4 to 5 wt pct Ni, suggesting that precipitate growth in Fe-Ni martensite is partially interface reaction controlled at low temperatures (<500 °C). The results of the experimental studies modify the γ/α + γ phase boundary in the present low-temperature Fe-Ni phase diagram and establish the eutectoid reaction in the temperature range between 400 °C and 450 °C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. L. Kaufman and M. Cohen:Trans. AIME, 1956, vol. 206, pp. 1339–401.

    Google Scholar 

  2. A.D. Romig, Jr. and J.I. Goldstein:Metall. Trans. A, 1980, vol. 11, pp. 1151–59.

    Article  Google Scholar 

  3. J.I. Goldstein and R.E. Ogilvie:Trans. AIME, 1965, vol. 233, pp. 2083–87.

    CAS  Google Scholar 

  4. K.B. Reuter, D.B. Williams, and J.I. Goldstein:Geochim. Cosmochim. Acta, 1988, vol. 52, pp. 617–26.

    Article  CAS  Google Scholar 

  5. K.B. Reuter, D.B. Williams, and J.I. Goldstein:Metall. Trans. A, 1989, vol. 20, pp. 711–18.

    Google Scholar 

  6. Y.Y. Chuang, Y.Y. Chang, R. Schmid, and J.C. Lin:Metall. Trans. A, 1986, vol. 17, pp. 1361–72.

    Article  Google Scholar 

  7. K.B. Reuter, D.B. Williams, and J.I. Goldstein:Metall. Trans. A, 1989, vol. 20, pp. 719–25.

    Article  Google Scholar 

  8. D.B. Williams, J.R. Michael, J.I. Goldstein, and A.D. Romig:Ultramicroscopy, 1992, vol. 47, pp. 121–32.

    Article  CAS  Google Scholar 

  9. J.I. Goldstein, D.E. Newbury, P. Echlin, D.C. Joy, A.D. Romig, C.E. Lyman, C. Fiori, and E. Lifshin:Scanning Electron Microscopy and X-Ray Microanalysis, 2nd ed., Plenum Press, New York, NY, 1992, pp. 493–97.

    Google Scholar 

  10. J.R. Michael:Microbeam Analysis—1988, San Francisco Press Inc., San Francisco, CA, 1988, pp. 60–64.

    Google Scholar 

  11. J. Zhang: Ph.D. Dissertation, Lehigh University, Bethlehem, PA, 1991.

    Google Scholar 

  12. D.A. Porter and H. Westengen:Quantitative Microanalysis with High Spatial Resolution, G.W. Lorimer, M.H. Jacobs, and P. Doig, eds., The Metals Society, London, 1981, pp. 94–100.

    Google Scholar 

  13. J.I. Goldstein, C.E. Lyman, and J. Zhang:Microbeam Analysis—1990, San Francisco Press Inc., San Francisco, CA, 1990, pp. 265–73.

    Google Scholar 

  14. T. Malis, S.C. Cheng, and R.F. Egerton:J. Electron Micro. Technol., 1988, vol. 8, pp. 193–200.

    Article  CAS  Google Scholar 

  15. G. Cliff and G.W. Lorimer:J. Microsc, 1975, vol. 103, pp. 203–07.

    Google Scholar 

  16. S.J.B. Reed:Ultramicroscopy, 1982, vol. 7, pp. 405–09.

    Article  CAS  Google Scholar 

  17. J.R. Michael, D.B. Williams, C.F. Klein, and R. Ayer:J. Microsc, 1990, vol. 160, pp. 41–53.

    CAS  Google Scholar 

  18. J. Zhang, M.K. Miller, D.B. Williams, and J.I. Goldstein:Surf. Sci., 1992, vol. 266, pp. 433–40.

    Article  CAS  Google Scholar 

  19. P. Haasen:Physical Metallurgy, 2nd ed., Cambridge University Press, Cambridge, United Kingdom, 1986, pp. 211–15.

    Google Scholar 

  20. H.I. Aaronson:Decomposition of Austenite by Diffusional Process, 1962, Interscience, New York, NY, pp. 387–548.

    Google Scholar 

  21. R.D. Doherty:Physical Metallurgy, R.W. Cahn and P. Haasen, eds., North-Holland Publishing, Amsterdam, 1983, pp. 966–75.

    Google Scholar 

  22. D.A. Porter and K.E. Easterling:Phase Transformations in Metals and Alloys, Van Nostrand Reinhold, Wokingham, Berkshire, United Kingdom, 1981, pp. 279–87.

    Google Scholar 

  23. J.W. Martin and R.D. Doherty:Stability of Microstructure in Metallic Systems, Cambridge University Press, Cambridge, United Kingdom, 1976, pp. 36–50.

    Google Scholar 

  24. J. Zhang, D.B. Williams, and J.I. Goldstein:Metall. Mater. Trans. A, 1994, vol. 25A, pp. 1639–48.

    CAS  Google Scholar 

  25. J. Zhang, D.B. Williams, and J.I. Goldstein:Geochimica et Cosmochimica, 1993, vol. 57, pp. 3725–35.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Formerly Research Assistant, Department of Materials Science and Engineering, Lehigh University

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, J., Williams, D.B. & Goldstein, J.I. Decomposition of Fe-Ni martensite: Implications for the low-temperature (≤500 °C) Fe-Ni phase diagram. Metall Mater Trans A 25, 1627–1637 (1994). https://doi.org/10.1007/BF02668528

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02668528

Keywords

Navigation