Skip to main content
Log in

Prediction of alloy hardenability from thermodynamic and kinetic data

  • Published:
Metallurgical Transactions Aims and scope Submit manuscript

Abstract

A simple algorithm for the calculation of the hardenability of low alloy eutectoid steels is presented. This involves the semiempirical prediction of concentration-dependent CCT start and pearlite velocity curves using fundamental thermodynamic and kinetic data and current theories of nucleation and growth. The combination of analytic cooling curves with these predictions and a pearlite growth model based on site saturation at grain corners leads to a good prediction of the hardenability of steel 4068, extensively examined by Jominy, and a grain-size dependence which is qualitatively correct. It is also demonstrated via Taylor and binomial expansions of the undercooling within the various kinetic expressions that the hardenability at low alloy concentrations is correctly represented by linear or quadratic addition formulas. At the same time, it is unequivocally demonstrated that Grossman type multiplication formulas are theoretically incorrect. The quadratic terms in the addition formula quantify the so-called “synergistic” effects. The most important positive terms involve an interaction between austenite and ferrite stabilizers. Austenite stabilizers, by depressing the effective temperature of nucleation and diffusional growth processes involving partition of ferrite stabilizers in pearlite, make the latter processes more sluggish. In agreement with long-standing experience, it is concluded that the strongest and most economic hardenability effects can be obtained via mixtures which include both austenite and ferrite stabilizers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. A. Grossman and E. C. Bain:Principles of Heat Treatment, 5th ed., American Society for Metals, Metals Park, Ohio, 1964.

    Google Scholar 

  2. R. A. Grange:Met. Trans., 1973, vol. 4, p. 2231.

    CAS  Google Scholar 

  3. G. T. Brown and B. A. James:Met. Trans., 1973, vol. 4, p. 2245.

    Article  CAS  Google Scholar 

  4. C. F. Jatczak:Met. Trans., 1973, vol. 4, p. 2267.

    CAS  Google Scholar 

  5. G. F. Melloy, P. R. Slimon, and P. Podgursky:Met. Trans., 1973, vol. 4, p. 2279.

    CAS  Google Scholar 

  6. B. L. Bramfitt and A. R. Marder:Met. Trans., 1973, vol. 4, p. 2291.

    CAS  Google Scholar 

  7. M. A. Grossman:Elements of Hardenability, American Society for Metals, Cleveland, Ohio, 1952.

    Google Scholar 

  8. B. E. Lindblom, L. Höglund, and C. Andersson:J. Iron Steel Inst., 1971, vol. 209, p. 958.

    Google Scholar 

  9. ASM Handbook, p. 314, American Society for Metals, Cleveland, 1948.

  10. J. S. Kirkaldy:Met. Trans., 1972, vol. 3, p. 2777.

    Article  Google Scholar 

  11. D. E. Coates:Met. Trans., 1973, vol. 4, p. 2313.

    Article  CAS  Google Scholar 

  12. R. Sharma and G. R. Purdy:Met. Trans., 1973, vol. 4, p. 2303.

    CAS  Google Scholar 

  13. C. Zener:Trans. AIME, 1946, vol. 167, p. 550.

    Google Scholar 

  14. M. L. Picklesimer, D. L. McElroy, T. M. Kegley, Jr., E. E. Stansbury, and J. H. Frye, Jr.:Trans. TMS-AIME, 1960, vol. 218, p. 473.

    CAS  Google Scholar 

  15. D. Brown and N. Ridley:J. Iron Steel Inst., 1969, vol. 207, p. 1232.

    CAS  Google Scholar 

  16. N. Ridley, D. Brown, and H. I. Malik: unpublished research.

  17. F. E. Bowman:Trans. ASM, 1946, vol. 50, p. 105.

    Google Scholar 

  18. J. Fridberg and M. Hillert:Acta Met., 1970, vol. 18, p. 1253.

    Article  CAS  Google Scholar 

  19. J. M. Shapiro and J. S. Kirkaldy:Acta Met., 1968, vol. 16, p. 579.

    Article  CAS  Google Scholar 

  20. R. M. Brick and A. Phillips:Structure and Properties of Alloys, p. 309, McGraw-Hill, 1949.

  21. C. R. Brooks and E. E. Stansbury:J. Iron Steel Inst, 1965, vol. 203, p. 514.

    Google Scholar 

  22. K. C. Russell:Acta Met., 1968, vol. 16, p. 761.

    Article  CAS  Google Scholar 

  23. K. C. Russell:Acta Met., 1969, vol. 17, p. 1123.

    Article  CAS  Google Scholar 

  24. R. A. Grange and J. M. Keffer:Trans. ASM, 1941, vol. 29, p. 85.

    CAS  Google Scholar 

  25. D’Arcy Thompson:On Growth and Form, vol. 2, p. 551, Cambridge University Press, 1963.

  26. W. E. Jominy:Metal Progr., December, 1941, p. 911.

  27. W. A. Johnson and R. F. Mehl:Trans. AIME, 1939, vol. 135, p. 416.

    Google Scholar 

  28. M. Avrami:J. Chem. Phys., 1939, vol. 7, p. 1103.

    Article  CAS  Google Scholar 

  29. J. W. Cahn:Acta Met, 1956, vol. 4, p. 449.

    Article  CAS  Google Scholar 

  30. J. W. Cahn:Acta Met., 1956, vol. 4, p. 574.

    Google Scholar 

  31. J. W. Cahn and W. C. Hagel: inDecomposition of Austenite by Diffusional Processes, V. F. Zackay and H. I. Aaronson, eds., p. 131, Interscience Publishers, New York, 1962.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This paper is based on a presentation made at a symposium on “Hardenability” held at the Cleveland Meeting of The Metallurgical Society of AIME, October 17, 1972, under the sponsorhip of the IMD Heat Treatment Committee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kirkaldy, J.S. Prediction of alloy hardenability from thermodynamic and kinetic data. Metall Trans 4, 2327–2333 (1973). https://doi.org/10.1007/BF02669371

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02669371

Keywords

Navigation