Skip to main content
Log in

Influence of peak pressure and temperature on the structure/property response of shock- loaded Ta and Ta-10W

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The deformation behavior and substructure evolution of unalloyed-Ta and Ta-10W under quasistatic conditions have been compared to their respective responses when shock prestrained to 20 GPa at 25 °C as well as to unalloyed-Ta shocked to 7 GPa at 25 °C, 200 °C, and 400 °C. The reload yield behavior of shock-prestrained Ta and Ta-10W did not exhibit enhanced shock hardening when compared to their respective quasistatic stress-strain response at an equivalent strain level. In addition, the reload yield behavior of Ta shock prestrained to 7 GPa at 200 °C or 400 °C was found to exhibit increased hardening compared to the shock prestraining at 25 °C. The quasistatic substructure evolution and shock-hardening responses of Ta and Ta-10W were investigatedvia transmission electron microscopy (TEM). The dislocation substructures in both materials and at each strain rate condition and temperature were similar and consisted primarily of long, straight, ( α/2) 〈111〉 type screw dislocations. The propensity for long, straight screw dislocations, irrespective of the loading condition, supports the theory of strong Peierls stress control on defect generation and defect storage. The substructure evolution and mechanical behavior of Ta and Ta-10W are discussed in terms of defect storage mechanisms and compared to the mechanisms operative in face-centered cubic (fcc) metals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G.E. Dieter:Response of Metals to High Velocity Deformation, Interscience Publishers, New York, NY, 1961, pp. 409–45.

    Google Scholar 

  2. L.E. Murr: inShock Waves and High Strain Rate Phenomena in Metals, M.A. Meyers and L.E. Murr, eds., Plenum Press, New York, NY, 1981, pp. 607–73.

    Chapter  Google Scholar 

  3. G.T. Gray: inHigh Pressure Shock Compression of Solids, J.R. Asay and M. Shahinpoor, eds., Springer-Verlag, New York, NY, 1993, pp. 187–215.

    Chapter  Google Scholar 

  4. W.C. Leslie:Metallurgical Effects at High Strain Rates, Plenum Press, New York, NY, 1973, p. 571.

    Book  Google Scholar 

  5. S. Mahajan:Phys. Status Solidi A, 1970, vol. 2, pp. 187–201.

    Article  Google Scholar 

  6. M.A. Mogilevsky and P.E. Newman:Phys. Rep., 1983, vol. 97, pp. 357–93.

    Article  Google Scholar 

  7. G.T. Gray and P.S. Follansbee: inImpact Loading and Dynamic Behavior of Materials, C.Y. Chiem, H.-D. Kunze, and L.W. Meyer, eds., Deutsche Gesellschaft fuer Metallkunde, Oberursel, Germany, 1988, vol. 2, pp. 541–48.

    Google Scholar 

  8. P.S. Follansbee and G.T. Gray:Int. J. Plasticity, 1991, vol. 7, pp. 651–60.

    Article  Google Scholar 

  9. R.G. McQueen and S.P. Marsh:J. Appl. Phys., 1960, vol. 31, pp. 1253–69.

    Article  Google Scholar 

  10. V. Vitek:Dislocations and Properties of Real Materials, Institute of Metals, London, 1985, vol. 323, pp. 30–50.

    Google Scholar 

  11. J.W. Christian:Metall. Trans. A, 1983, vol. 14A, pp. 1237–56.

    Article  Google Scholar 

  12. G.T. Gray, S. Bingert, S.I. Wright, and S.R. Chen: inHigh-Temperature Suicides and Refractory Alloys, C.L. Briant, J.J. Petrovic, B.P. Bewlay, A.K. Vasudevan, and H.A. Lipsitt, eds., Materials Research Society, Pittsburgh, PA, 1994, vol. 322, pp. 407–12.

    Google Scholar 

  13. G.T. Gray and A.D. Rollett: inHigh Strain Rate Behavior of Refractory Metals and Alloys, R. Asfahani, E. Chen, and A. Crowson, eds., TMS-AIME, Warrendale, PA, 1992, pp. 303–15.

    Google Scholar 

  14. W. Kock and P. Paschen:J. Met., 1989, vol. 41, p. 33.

    Google Scholar 

  15. R.J. Arsenault and A. Lawley: inWork Hardening, J.P. Hirth and J. Weertman, eds., Gordon and Breach Science Publishers, New York, NY, 1968, vol. 46, pp. 283–309.

    Google Scholar 

  16. J.B. Clark, J.R.K. Garrett, T.L. Jungling, and R.I. Asfahani:Metall. Trans. A, 1991, vol. 22A, pp. 2959–68.

    Article  Google Scholar 

  17. J.B. Clark, J.R.K. Garrett, T.L. Jungling, and R.I. Asfahani:Metall. Trans. A, 1992, vol. 23A, pp. 2183–91.

    Article  Google Scholar 

  18. S.I. Wright, G.T. Gray, and A.D. Rollett:Metall. Mater. Trans. A, 1994, vol. 25A, pp. 1025–31.

    Article  Google Scholar 

  19. CM. Lopatin, C.L. Wittman, J.P. Swensen, and P.F. Perron: inHigh Strain Rate Behavior of Refractory Metals and Alloys, R. Asfhani, E. Chen, and A. Crowson, eds., TMS-AIME, Warrendale, PA, 1992, pp. 241–47.

    Google Scholar 

  20. A.M. Rajendran, J.R.K. Garrett, J.B. Clark, and T.L. Jungling:J. Mater. Shaping Technol, 1991, vol. 9, pp. 7–20.

    Article  Google Scholar 

  21. A.M. Rajendran and J.R.K. Garrett: inHigh Strain Rate Behavior of Refractory Metals and Alloys, R. Asfahani, E. Chen, and A. Crowson, eds., TMS-AIME, Warrendale, PA, 1992, pp. 289–302.

    Google Scholar 

  22. D.H. Lassila and G.T. Gray:3rd Int. Conf. on Mechanical and Physical Behavior of Materials under Dynamic Loading, J.D.P. IV, ed., 1991, vol. 1, pp. C3-19-C3-26.

  23. C.L. Wittman, J.R.K. Garrett, J.B. Clark, and C.M. Lopatin: inShock- Wave and High-Strain-Rate Phenomena in Materials, M.A. Meyers, L.E. Murr, and K.P. Staudhammer, eds., Marcel Dekker, Inc., New York, NY 1992, pp. 925–33.

    Google Scholar 

  24. G.T. Gray:High-Pressure Science and Technology—1993 AIP Conf. Proc, S.C. Schmidt, J.W. Shaner, G.A. Samara, and M. Ross, eds., American Institute of Physics, New York, NY, 1994, vol. 309, pp. 1103–06.

    Google Scholar 

  25. J.N. Johnson, R.S. Hixson, D.L. Tonks, and G.T. Gray:High-Pressure Science and Technology—1993 AIP Conf. Proc, S.C. Schmidt, J.W. Shaner, G.A. Samara, and M. Ross, eds., American Institute of Physics, New York, NY, 1994, vol. 309, pp. 1095–98.

    Google Scholar 

  26. D.L. Tonks, R.S. Hixson, J.N. Johnson, and G.T. Gray:High-Pressure Science and Technology—1993 AIP Conf. Proc, S.C. Schmidt, J.W. Shaner, G.A. Samara, and M. Ross, eds., American Institute of Physics, New York, NY, 1994, vol. 309, pp. 997–1000.

    Google Scholar 

  27. M.D. Furnish, L.C. Chhabildas, and D.J. Steinberg:High-Pressure Science and Technology—1993 AIP Conf. Proc, S.C. Schmidt, J.W. Shaner, G.A. Samara, and M. Ross, eds., American Institute of Physics, New York, NY, 1994, vol. 309, pp. 1099–1102.

    Google Scholar 

  28. P.S. Follansbee: inMetals Handbook, ASM, Metals Park, OH, 1985, vol. 8, pp. 198–203.

    Google Scholar 

  29. P.S. Follansbee and U.F. Kocks:Acta Metall, 1988, vol. 36, pp. 81–93.

    Article  Google Scholar 

  30. G.T. Gray: inModeling the Deformation of Crystalline Solids, T.C. Lowe, A.D. Rollert, P.S. Follansbee, and G.S. Daehn, eds., TMS- AIME, Warrendale, PA, 1991, pp. 145–58.

    Google Scholar 

  31. K.S. Vecchio and G.T. Gray:High-Pressure Science and Technology—1993 AIP Conf. Proc, S.C. Schmidt, J.W. Shaner, G.A. Samara, and M. Ross, eds., American Institute of Physics, New York, NY, 1994, vol. 309, pp. 1213–16.

    Google Scholar 

  32. G.T. Gray, P.S. Follansbee, and C.E. Frantz:Mater. Sci. Eng., 1989, vol. A111, pp. 9–16.

    Article  Google Scholar 

  33. D.I. Bolef:J. Appl. Phys., 1961, vol. 32, p. 100.

    Article  Google Scholar 

  34. R.W. Anderson and S.E. Bronisz:Acta Metall., 1959, vol. 7, pp. 645–46.

    Article  Google Scholar 

  35. C.S. Barrett and R. Bakish:Trans. AIME, 1958, vol. 212, pp. 122–23.

    Google Scholar 

  36. G.T. Gray: inHigh Pressure Shock Compression of Solids, J.R. Asay and M. Shahinpoor, eds., Springer-Verlag, New York, NY, 1993, pp. 187–215.

    Chapter  Google Scholar 

  37. S.-R. Chen and G.T. Gray: Los Alamos National Laboratory, Los Alamos, NM, unpublished research, 1994.

  38. U.F. Kocks: inThe Mechanics of Dislocations, E.C. Aifantis and J.P. Hirth, eds., ASM, Metals Park, OH, 1985, pp. 81–83.

    Google Scholar 

  39. J.N. Johnson:High-Pressure Science and Technology—1993 AIP Conf. Proc, S.C. Schmidt, J.W. Shaner, G.A. Samara, and M. Ross, eds., American Institute of Physics, New York, NY, 1994, vol. 309, pp. 1145–48.

    Google Scholar 

  40. Z.S. Basinski, M.S. Duesbery, and R. Taylor:Phil. Mag., 1970, vol. 21, pp. 1201–21.

    Article  Google Scholar 

  41. U.F. Kocks: inUnified Constitutive Equations for Creep and Plasticity, A.K. Miller, ed., Elsevier Press, New York, NY, vol. 1987, pp. 1-88.

  42. J.R. Low and A.M. Turkalo:Acta Metall., 1962, vol. 10, pp. 215–27.

    Article  Google Scholar 

  43. W.G. Johnston and J.J. Gilman:J. Appl. Phys., 1960, vol. 31, pp. 632–43.

    Article  Google Scholar 

  44. J.R. Low and R.W. Guard:Acta Metall, 1959, vol. 7, pp. 171–79.

    Article  Google Scholar 

  45. D.K. Bowen, J.W. Christian, and G. Taylor:Can. J. Phys., 1967, vol. 45, pp. 903–38.

    Article  Google Scholar 

  46. W.A. Spitzig and T.E. Mitchell:Acta Metall, 1966, vol. 14, pp. 1311–23.

    Article  Google Scholar 

  47. U.F. Kocks:Proc. Conf. on Dislocations and Properties of Real Materials, The Institute of Metals, London, 1985, vol. 323, p. 125.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This article is based on a presentation made in the symposium “Dynamic Behavior of Materials,” presented at the 1994 Fall Meeting of TMS/ASM in Rosemont, Illinois, October 3-5, 1994, under the auspices of the TMS-SMD Mechanical Metallurgy Committee and the ASM-MSD Flow and Fracture Committee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gray, G.T., Vecchio, K.S. Influence of peak pressure and temperature on the structure/property response of shock- loaded Ta and Ta-10W. Metall Mater Trans A 26, 2555–2563 (1995). https://doi.org/10.1007/BF02669413

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02669413

Keywords

Navigation