Skip to main content
Log in

Effect of crack surface geometry on fatigue crack closure

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The geometry of crack faces often plays a critical role in reducing crack extension forces when crack closure occurs during fatigue crack growth. Most previous studies of fatigue crack closure are concerned with mechanical measures of closure as related to the crack growth rate; very little attention has been given to the geometry of the crack surfaces. Our objective is to identify those aspects of crack surface geometry that are important in the closure process, to develop quantitative fractographic techniques to estimate such attributes in a statistically significant and robust manner, and to correlate them to the physical process of crack closure. For this purpose, fatigue crack propagation experiments were performed on a Ni-base superalloy and crack growth rates and crack closure loads were measured. Digital image profilometry and software-based analysis techniques were used for statistically reliable and detailed quantitative characterization of fatigue crack profiles. It is shown that the dimensionless, scale-independent attributes, such as height-to-width ratio of asperities, fractal dimensions, dimensionless roughness parameters,etc., do not represent the aspects of crack geometry that are of primary importance in the crack closure phenomena. Furthermore, it is shown that the scaledependent characteristics, such as average asperity height, do represent the aspects of crack geometry that play an interactive role in the closure process. These observations have implications concerning the validity of geometry-dependent, closure-based models for fatigue crack growth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. Elber:Damage Tolerance in Aircraft Structures, ASTM STP 486, ASTM, Philadelphia, PA, 1971, pp. 230–45.

    Book  Google Scholar 

  2. D. Taylor:Fatigue Thresholds, Butterworth and Co., London, 1989.

    Google Scholar 

  3. T. Lindley and C. Richards:Mater. Sci. Eng., 1974, vol. 14, pp. 281- 93.

    Article  Google Scholar 

  4. B. Budianski and J. Hitchinson:J. Appl. Mech.character., 1981, vol. 45, pp. 267–76.

    Article  Google Scholar 

  5. S. Suresh and R. Ritche:Metall. Trans. A, 1982, vol. 13A, pp. 1627–31.

    Article  Google Scholar 

  6. K. Minakawa and A. McEvily:Scripta Metall, 1981, vol. 15, pp. 633–36.

    Article  Google Scholar 

  7. J. McCarver and R. Ritche:Mater. Sci. Eng., 1982, vol. 55, pp. 63–67.

    Article  Google Scholar 

  8. K. Ravichandran:Int. J. Fract., 1990, vol. 44, pp. 97–110.

    Article  Google Scholar 

  9. S. Suresh and R. Ritche:Eng. Fract. Mech., 1983, vol. 18, pp. 174- 86.

    Google Scholar 

  10. J.L. Yuen and P. Roy:Fatigue Crack Growth Threshold Concepts, D. Davidson and S. Suresh, eds., TMS, Warrendale, PA, 1983, pp. 112–24.

    Google Scholar 

  11. J.K. Shang, J.L. Tzou, and R.O. Ritche:Metall. Trans. A, 1987, vol. 18A, pp. 1613–27.

    Article  Google Scholar 

  12. D. Kreuger, S.D. Antolovich, and R. Van Stone:Metall. Trans. A, 1987, vol. 18A, pp. 1431–49.

    Article  Google Scholar 

  13. E. Zaiken and R. Ritche:Mater. Sci. Eng., 1985, vol. 70, pp. 151–60.

    Article  Google Scholar 

  14. J.E. King:Mater. Sci. Technol, 1987, vol. 3, pp. 750–64.

    Article  Google Scholar 

  15. K. Ravichandran and E. Dwarkadasa:Metall. Trans. A, 1990, vol. 21A, pp. 3171–86.

    Article  Google Scholar 

  16. K. Esasklul, A. Wright, and W. Gerberich:Scripta Metall, 1983, vol. 17, pp. 1073–78.

    Article  Google Scholar 

  17. R. Carter, E. Lee, E. Starke, and C. Beevers:Metall. Trans., 1984, vol. 15A, pp. 555–63.

    Article  Google Scholar 

  18. R. Bowman: Ph.D. Dissertation, Georgia Institute of Technology, Atlanta, GA, 1988.

    Google Scholar 

  19. K. Venkateswara Rao, W. Yu, and R. Ritche:Metall. Trans. A., 1988, vol. 19A, pp. 549–61.

    Google Scholar 

  20. J. Wasen, K. Hamberg, and B. Karlsson:Mater. Sci. Eng., 1988, vol. 102, pp. 217–26.

    Article  Google Scholar 

  21. P. Liaw and W. Logsdon:Acta Metall, 1988, vol. 36, pp. 1731–44.

    Article  Google Scholar 

  22. W. Gerberich, W. Yu, and K. Esasklul:Metall. Trans. A., 1984, vol. 15A, pp. 875–88.

    Article  Google Scholar 

  23. K. Ravichandran, H. Venkata Rao, E. Dwarkadasa, and C. Krishnadas Nair:Metall Trans. A., 1987, vol. 18A, pp. 865–76.

    Article  Google Scholar 

  24. W.J. Drury: Ph.D. Dissertation, Georgia Institute of Technology, Atlanta, GA, 1993.

    Google Scholar 

  25. R. Bowman, S.D. Antolovich, and R. Brown:Eng. Fract. Mech., 1988, vol. 31, pp. 703–12.

    Article  Google Scholar 

  26. M. Bartlett: Master’s Thesis, Georgia Institute of Technology, Atlanta, GA, 1987.

    Google Scholar 

  27. A.M. Gokhale, W.J. Drury, and S. Mishra: inFractography of Modern Engineering Materials--II, L. Gilbertson and J. Masters, eds., ASTM STP 1203, ASTM, Philadelphia, PA, 1993, 1–18.

    Google Scholar 

  28. W.J. Drury and A.M. Gokhale:Metallography: Past, Present, and Future, G.F. Vander Voort, ed., ASTM STP 1094, ASTM, Philadelphia, PA, 1992.

    Google Scholar 

  29. A.M. Gokhale and E.E. Underwood:Metall. Trans. A., 1990, vol. 21 A, pp. 1193–99.

    Article  Google Scholar 

  30. A.M. Gokhale and W.J. Drury:Mater. Characterization, 1993, vol. 31, pp. 115–23.

    Article  Google Scholar 

  31. B.B. Mandelbrot:Fractal Geometry of Nature, W.H. Freeman and Co., New York, NY, 1982.

    Google Scholar 

  32. C.J. Beevers, K. Bell, and R.L. Carlson:Eng. Fract. Mech., 1984, vol. 19, pp. 93–100.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Drury, W.J., Gokhale, A.M. & Antolovich, S.D. Effect of crack surface geometry on fatigue crack closure. Metall Mater Trans A 26, 2651–2663 (1995). https://doi.org/10.1007/BF02669422

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02669422

Keywords

Navigation