Skip to main content
Log in

Creep-fatigue life prediction of in situ composite solders

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Eutectic tin-lead solder alloys subjected to cyclic loading at room temperature experience creep-fatigue interactions due to high homologous temperature. Intermetallic reinforcements of Ni3Sn4 and Cu6Sn5 are incorporated into eutectic tin-lead alloy by rapid solidification processes to formin situ composite solders. In this study, thein situ composite solders were subjected to combined creep and fatigue deformation at room temperature. Under cyclic deformation, the dominant damage mechanism ofin situ composite solders is proposed to be growth of cavities. A constrained cavity growth model is applied to predict creep-fatigue life by taking into account the tensile loading component as well as the compressive loading component when reversed processes can occur. An algorithm to calculate cavity growth in each fatigue cycle is used to predict the number of fatigue cycles to failure, based on a critical cavity size of failure. Calculated lives are compared to experimental data under several fatigue histories, which include fully reversed stress-controlled fatigue, zero-tension stress-controlled fatigue, stress-controlled fatigue with tension hold time, fully reversed strain-controlled fatigue, and zero-tension straincontrolled fatigue. The model predicts the creep-fatigue lives within a factor of 2 with the incorporation of an appropriate compressive healing factor in most cases. Discrepancy between calculated lives and experimental results is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D.S. Steinberg:Machine Design, 1989, May, p. 105.

  2. D.S. Steinberg:Vibration Analysis for Electronic Equipment, 2nd ed., Wiley, New York, NY, 1988.

    Google Scholar 

  3. S. Liguore, S. Fields, D. Followell, and R. Perez: Paper presented at the ASME Winter Annual Meeting, Anaheim, CA, Nov. 8–13, 1992.

  4. S. Fields, S. Liguore, D. Followell, and R. Perez: Paper presented at the ASME Winter Annual Meeting, Anaheim, CA, Nov. 8–13, 1992.

  5. S. Vaynamn, M.E. Fine, and D.A. Jeannotte:Solder Mechanics, D.R. Frear, W.B. Jones, and K.R. Kinsman, eds., TMS, Warrendale, PA, 1991, pp. 155–89.

    Google Scholar 

  6. D.R. Frear:Solder Mechanics, D.R. Frear, W.B. Jones, and K.R. Kinsman, eds., TMS, Warrendale, PA, 1991, pp. 191–237.

    Google Scholar 

  7. S.M.L. Sastry, T.C. Peng, R.J. Lederich, K.L. Jerina, and C.G. Kuo:Proc. NEPCON ’92, Anaheim, CA, 1992, Cahners Exposition Group, Des Plaines, IL, pp. 1266–75.

    Google Scholar 

  8. C.G. Kuo, S.M.L. Sastry, and K.L. Jerina:1st Int. Conf. on Microstructures and Mechanical Properties of Aging Materials, P.K. Liaw, R. Viswanathm, K.L. Murty, E.P. Simonen, and D. Fear, eds., TMS, Warrendale, PA, 1993, pp. 409–15.

    Google Scholar 

  9. C.G. Kuo, S.M.L. Sastry, and K.L. Jerina:1st Int. Conf. on Microstructures and Mechanical Properties of Aging Materials, P.K. Liaw, R. Viswanathm, K.L. Murty, E.P. Simonen, and D. Fear, eds., TMS, Warrendale, PA, 1993, pp. 417–23.

    Google Scholar 

  10. S. Majumdar and W.B. Jones:Solder Mechanics, D.R. Frear, W.B. Jones, and K.R. Kinsman, eds., TMS, Warrendale, PA, 1991, pp. 273–360.

    Google Scholar 

  11. G.E. Dieter:Mechanical Metallurgy, 3rd ed., McGraw-Hill Book Company, 1988, p. 466.

  12. S. Majumdar and P.S. Maiya:J. Eng. Mater. Technol., 1980, vol. 102, pp. 159–67.

    Article  CAS  Google Scholar 

  13. H.L. Bernstein:Low-Cycle Fatigue and Life Prediction, ASTM STP 770, C. Amzallag, B.N. Leis, and P. Rabbe, eds., ASTM, Philadelphia, PA, 1982, pp. 105–34.

    Google Scholar 

  14. H. Riedel:Fracture at High Temperature, Springer-Verlag, Berlin, 1987.

    Google Scholar 

  15. R.B. Vastava and T.G. Langdon:Acta Metall., 1979, vol. 27, pp. 251–56.

    Article  CAS  Google Scholar 

  16. K.K. Kim, D. Gupta, and P.S. Ho:J. Appl. Phys., 1982, vol. 53 (5), pp. 3620–23.

    Article  CAS  Google Scholar 

  17. P.T. Vianco and D.R. Frear:JOM, 1993, July, pp. 14–19.

  18. L. Murr:Interfacial Phenomena in Metals and Alloys, Addison- Wesley, Reading, MA, p. 105.

  19. V.T. Borisov, V.M. Golikov, and G.V. Scherbedinskiy:Phys. Met. Metallorg. (USSR), 1964, vol. 17, p. 80.

    Google Scholar 

  20. C.T. Smithells:Metal Reference Book, 5th ed., Butterworth, London, 1976, pp. 860-939.

  21. L. Martinez and W.D. Nix:Scripta Metall., 1981, vol. 15, pp. 757–61.

    Article  Google Scholar 

  22. M.V. Speight and W. Beere:Met. Sci., 1975, vol. 9, pp. 190–91.

    Article  Google Scholar 

  23. Y.-S. Kim, M.J. Verrilli, and G.R. Halford: NASA Technical Memorandum 105780, 1992.

  24. J.D. Embury:Metall. Trans. A, 1985, vol. 16A, pp. 2191–2200.

    Google Scholar 

  25. R. Raj:Acta Metall., 1978, vol. 26, pp. 995–1006.

    Article  CAS  Google Scholar 

  26. G. Massing:Proc. 2nd Int. Congress on Applied Mechanics, Zurich, 1926.

  27. J.A. Bannantine, J.J. Comer, and J.L. Handrock:Fundamentals of Metal Fatigue Analysis, Prentice-Hall, Inc., Englewood Cliffs, NJ, 1990, p. 54.

    Google Scholar 

  28. S.M.L. Sastry, D.R. Frear, C.G. Kuo, and K.L. Jerina:The Mechanics of Solder Alloy Wetting and Spreading, F.G. Yost, F.M. Hosking, and D.R. Frear, eds., Van Nostrand Reinhold, New York, NY, 1993, pp. 299–352.

    Google Scholar 

  29. A. Gittins:Met. Sci. J., 1968, vol. 2, pp. 51–58.

    Article  CAS  Google Scholar 

  30. J.S. Wang and W.D. Nix:Mater. Sci. Eng., 1987, vol. 89, pp. 73–80.

    Article  CAS  Google Scholar 

  31. S. Baik and R. Raj:Metall. Trans. A, 1982, vol. 13A, pp. 1207–14.

    Google Scholar 

  32. M.Y. He and J.W. Hutchinson:Trans. SAME, J. of Appl. Mech., 1981, vol. 48, pp. 830–40.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This article is based on a presentation made in the symposium entitled “Creep and Fatigue in Metal Matrix Composites” at the 1994 TMS/ASM Spring meeting, held February 28–March 3, 1994, in San Francisco, California, under the auspices of the joint TMS-SMD/ASM-MSD Composite Materials Committee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kuo, C.G., Sastry, S.M.L. & Jerina, K.L. Creep-fatigue life prediction of in situ composite solders. Metall Mater Trans A 26, 3265–3275 (1995). https://doi.org/10.1007/BF02669454

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02669454

Keywords

Navigation