Skip to main content
Log in

Microstructural changes in HSLA-100 steel thermally cycled to simulate the heat-affected zone during welding

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The microstructural changes that occur in a commercial HSLA-100 steel thermally cycled to simulate weld heat affected zone (HAZ) behavior were systematically investigated primarily by transmission electron microscopy (TEM). Eight different weld thermal cycles, with peak temperatures representative of four HAZ regions (the tempered region, the intercritical region, the fine-grained austenitized region, and the coarse-grained austenitized region) and cooling rates characteristic of high heat input (cooling rate (CR) = 5 °C/s) and low heat input (CR = 60 °C/s) welding were simulated in a heating/quenching dilatometer. The as-received base plate consisted of heavily tempered lath martensite, acicular ferrite, and retained austenite matrix phases with precipitates of copper, niobiumcarbonitride, and cementite. The microstructural changes in both the matrix and precipitate phases due to thermal cycling were examined by TEM and correlated with the results of (1) conventional optical microscopy, (2) prior austenite grain size measurements, (3) microhardness testing, and (4) dilatometric analysis. Many of the thermal cycles resulted in dramatic changes in both the microstructures and the properties due to the synergistic interaction between the simulated position in the HAZ and the heat input. Some of these microstructures deviate substantially from those predicted from published continuous cooling transformation (CCT) curves. The final microstructure was predominantly dependent upon peak temperature(i.e., position within the HAZ), although the cooling rate(i.e., heat input) strongly affected the microstructures of the simulated intercritical and finegrained austenitized regions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. A.M. Sage:Met. Mater., 1989, Oct., pp. 584–88.

  2. R.R. Irving:Iron Age, 1986, May, pp. 53–55.

  3. P.W. Holsberg, J.P. Gudas, and I.L. Caplan:Adv. Mater. Processes, 1990, vol. 138 (1), pp. 45–49.

    Google Scholar 

  4. T.W. Montemarano, B.P. Sack, J.P. Gudas, M.G. Vassilaros, and H.H. Vanderveldt:J. Ship Production, 1986, vol. 22, pp. 145–62.

    Google Scholar 

  5. E.J. Czyryca, R.E. Link, R.J. Wong, D.A. Aylor, T.W. Montemarano, and J.P. Gudas:Naval Eng. J., 1990, vol. 102, pp. 63–82.

    Article  Google Scholar 

  6. A.D. Wilson, E.G. Hamburg, D.J. Colvin, S.W. Thompson, and G. Krauss:Proc. Microalloying ’88, World Materials Congress, ASM INTERNATIONAL, Metals Park, OH, 1988, pp. 259–75.

    Google Scholar 

  7. M. Mujahid, A.K. Lis, C.I. Garcia, and A.J. DeArdo:Proc. Int. Conf. on Processing, Microstructure and Properties of Microalloyed and Other Modern HSLA Steels, ISS-AIME, Warrendale, PA, 1992, pp. 345–56.

    Google Scholar 

  8. G.R. Speich and T.M. Scoonover:Processing, Microstructure and Properties of HSLA Steels, A.J. Deardo, ed., TMS, Warrendale, PA, 1988, pp. 263–85.

    Google Scholar 

  9. A.J. DeArdo:HSLA Steels: Processing, Properties and Applications, G. Tither and S. Zhang, eds., TMS, Warrendale, PA, 1992, pp. 21- 32.

    Google Scholar 

  10. S. Mishra, S.K. Chaushuri, and V. Ramaswamy:Int. Symp. on Low- Carbon Steels for the 90’s, R. Asfahani and G. Tither, eds., TMS, Warrendale, PA, 1993, pp. 331–35.

    Google Scholar 

  11. G. Krauss, D.K. Matlock, and E.A. Cornford:HSLA Steels: Technology and Applications, ASM, Metals Park, OH, 1984, pp. 297- 328.

    Google Scholar 

  12. M. Manganello:Proceedings of the International Conference on Processing, Microstructure and Properties of Microalloyed and Other Modern HSLA Steels, ISS-AIME, Warrendale, PA, 1992, pp. 289–313.

    Google Scholar 

  13. S.J. Mikalac and M.G. Vassilaros:Proc. Int. Conf. on Processing, Microstructure and Properties of Microalloyed and Other Modern HSLA Steels, ISS-AIME, Warrendale, PA, 1992, pp. 331–43.

    Google Scholar 

  14. D.C. Houghton, G.C. Weatherly, and J.D. Embury:Thermomechanical Processing of Microalloyed Austenite, A.J. DeArdo, G.A. Ratz, and P.J. Wray, eds., TMS-AIME, Warrendale, PA, 1982, pp. 267–92.

    Google Scholar 

  15. R. Varughese and P.R. Howell:Mater. Characterization, 1993, vol. 30, pp. 261–67.

    Article  CAS  Google Scholar 

  16. S.W. Thompson, D.J. Colvin, and G. Krauss:Metall. Trans. A, 1990, vol. 21A, pp. 1493–1507.

    CAS  Google Scholar 

  17. E.J. Czyryca: Report No. DTNSRC/SME-87/83, David Taylor Research Center, Bethesda, MD 20084-5000, Feb. 1988.

  18. E.J. Czyryca: Report No. DTRC/SME-89/19, David Taylor Research Center, Bethesda, MD 20084-5000, July 1989.

  19. K.E. Easterling:Recent Trends in Welding Science and Technology, TWR 89, ASM INTERNATIONAL, Metals Park, OH, 1990, vol. 177- 88.

    Google Scholar 

  20. P.W. Holsberg, J.P. Gudas, and I.L. Caplan:Recent Trends in Welding Science and Technology, TWR ’89, ASM INTERNATIONAL, Metals Park, OH, 1990, pp. 593–605.

    Google Scholar 

  21. O. Grong and D.K. Matlock:Int. Met. Rev., 1986, vol. 31, pp. 27–48.

    CAS  Google Scholar 

  22. H.S. Carslaw and J.C. Jaeger:Conduction of Heat in Solids, 2nd ed., Oxford University Press, 1959, p. 201.

  23. G.T. Eldis:Hardenability Concepts with Applications to Steel, D.V. Doane and J.S. Kirkaldy, eds., TMS-AIME, Warrendale, PA, 1978, pp. 126–48.

    Google Scholar 

  24. Annual Book of ASTM Standards, ASTM Designation E399, ASTM, Philadelphia, PA, 1989, vol. 03.01, p. 489.

  25. Annual Book of ASTM Standards, ASTM Designation E384-84, ASTM, Philadelphia, PA, 1989, vol. 03.01, pp. 469–83.

  26. G. Krauss:Steels: Heat Treatment and Processing Principles, ASM INTERNATIONAL, Metals Park, OH, 1990.

    Google Scholar 

  27. A.W. Brewer, K.A. Erven, and G. Krauss:Mater. Characterization, 1991, vol. 27, pp. 53–56.

    Article  CAS  Google Scholar 

  28. L. Zhang and D.C. Guo:Mater. Characterization, 1993, vol. 30, pp. 299–305.

    Article  CAS  Google Scholar 

  29. F.F. Vander Voort and J.R. Kilpatrick:Mater. Characterization, 1993, vol. 30, pp. 303–05.

    Article  Google Scholar 

  30. S.W. Thompson: Colorado School of Mines, Golden, Colorado, 80401, private communication, 1993.

  31. H. Abrahms:Metallography, 1971, vol. 4, pp. 59–78.

    Article  Google Scholar 

  32. Annual Book of ASTM Standards, ASTM Designation E384-84, ASTM, Philadelphia, PA, 1989, vol. 03.01, pp. 469-83.

  33. J.D. Lavender and F.W. Jones:J. Iron Steel Inst., Sept. 1949, p. 14.

  34. G. Krauss: Colorado School of Mines, Golden, Colorado, 80401, private communication, 1993.

  35. H.I. Aaronson and C. Wells:Trans. AIME, 1956, vol. 206, pp. 1216- 23.

    Google Scholar 

  36. P.G. Boswell, K.R. Kinsman, G.J. Shiflet, and H.I. Aaronson:Mechanical Properties and Phase Transformations in Engineering Materials, S.D. Antolovich, R.O. Richie, and W.W. Gerberich, eds., TMS-AIME, Warrendale, PA, 1986, pp. 445–66.

    Google Scholar 

  37. H.T. Tsubakino and H.I. Aaronson:Metall. Trans. A, 1987, vol. 18A, pp. 2047–60.

    CAS  Google Scholar 

  38. H.I. Aaronson, W.T. Reynolds, Jr., G.J. Shiflet, and G. Spanos:Metall. Trans. A, 1990, vol. 21 A, pp. 1343–80.

    Google Scholar 

  39. W.T. Reynolds, Jr., F.Z. Li, C.K. Shui, G.J. Shiflet, and H.I. Aaronson:Phase Transformations 87, G.W. Lorimer, ed., Institute of Metals, London, 1988, pp. 330–33.

    Google Scholar 

  40. G. Spanos, H.S. Fang, D.S. Sarma, and H.I. Aaronson:Metall. Trans. A, 1990, vol. 21A, pp. 1391–1411.

    CAS  Google Scholar 

  41. H.I. Aaronson:J. Microscopy, 1974, vol. 102, pp. 275–300.

    Google Scholar 

  42. I.M. Lifshitz and V.V. Slyozov:J. Phys. Chem. Solids, 1961, vol. 19, p. 35.

    Article  Google Scholar 

  43. C. Wagner:Z Elechtrochem, 1961, vol. 65, p. 581.

    CAS  Google Scholar 

  44. G.V. Kurdjumov and G. Sachs:Z Phys., 1933, vol. 64, p. 647.

    Google Scholar 

  45. R.E. Reed-Hill:Physical Metallurgy Principles, D. Van Nostrad Company, New York, NY, 1973.

    Google Scholar 

  46. W.B. Pearson:Handbook of Lattice Spacings and Structures of Metals and Alloys, Pergamon Press, Elmsford, NY, 1958.

    Google Scholar 

  47. C.A. Dube, H.I. Aaronson, and R.F. Mehl:Rev. Met, 1958, vol. 55, p. 201.

    CAS  Google Scholar 

  48. H.B. Aaron, D. Fainstein, and G.R. Kotler:J. Appl. Phys., 1970, vol. 41, p. 4404.

    Article  Google Scholar 

  49. P.G. Shewmon:Diffusion in Solids, McGraw-Hill Book Company, Inc., New York, NY, 1963.

    Google Scholar 

  50. R.W. Fonda, G. Spanos, and R.A. Vandermeer:Scripta Metall, 1994, vol. 31, p. 683.

    Article  CAS  Google Scholar 

  51. M. Katsumata, O. Ishiyama, T. Inoue, and T. Tanaka:Mater. Trans., JIM, 1991, vol. 32, pp. 715–28.

    CAS  Google Scholar 

  52. H.I. Aaronson:The Mechanism of Phase Transformations in Crystalline Solids, Monograph 33, Institute of Metals, London, 1969, pp. 270–81.

    Google Scholar 

  53. H.I. Aaronson and H.J. Lee:Scripta Metall, 1987, vol. 21, pp. 1011- 16.

    Article  CAS  Google Scholar 

  54. H. Oniel:Hardness Measurement of Metals and Alloys, Chapman and Hall Ltd., London, 1967, 82–86.

    Google Scholar 

  55. F. Watkison:Weld. Res. Suppl, 1969, Sept., 417–24.

Download references

Author information

Authors and Affiliations

Authors

Additional information

A. MATUSZESKI, formerly Summer Student, Physical Metallurgy Branch, Naval Research Laboratory.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Spanos, G., Fonda, R.W., Vandermeer, R.A. et al. Microstructural changes in HSLA-100 steel thermally cycled to simulate the heat-affected zone during welding. Metall Mater Trans A 26, 3277–3293 (1995). https://doi.org/10.1007/BF02669455

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02669455

Keywords

Navigation