Skip to main content
Log in

NiTi and NiTi-TiC composites: Part 1. transformation and thermal cycling behavior

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The transformation behavior of titanium-rich NiTi containing 0 vol pet, 10 vol pct, and 20 vol pct equiaxed TiC particles was studied by differential scanning calorimetry. The thermoelastic phase transformation of the unreinforced matrix exhibits multiple steps. Upon multiple transformation cycles, the rhombohedral phase (R phase) appears and all transformation temperatures decrease. The TiC particles inhibit the R phase and also lower some of the transformation temperatures. These effects can be explained by the internal misfit stresses resulting from both thermal expansion and transformation mismatch between matrix and reinforcement. The measured transformation enthalpy of bulk and reinforced NiTi is discussed in light of a thermodynamical model, taking into account the elastic energy stored upon cycling. The model indicates that a significant fraction of the matrix is stabilized and thus does not contribute to the transformation enthalpy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. Kudoh, M. Tokonami, S. Miyazaki, and K. Otsuka:Acta Metall., 1985, vol. 33, pp. 2049–56.

    Article  CAS  Google Scholar 

  2. T. Todoroki, H. Tamura, and Y. Suzuki:Proc. ICOMAT-86, The Japan Institute of Metals, Sendai, 1986, pp. 748–53.

    Google Scholar 

  3. T. Tadaki, J. Nakata, and K. Shimizu:Trans. Jpn. Inst. Met., 1987, vol. 28, pp. 883–90.

    CAS  Google Scholar 

  4. A.P. Jardine, K.H.G. Ashbee, and M.J. Bassett:J. Mater. Sci., 1988, vol. 23, pp. 4273–81.

    Article  CAS  Google Scholar 

  5. D.N. Abujudorn, P.E. Thorna, and S. Fariabi:Mater. Sci. Forum, 1990, vol. 562, pp. 565–70.

    Article  Google Scholar 

  6. H.C. Lin and S.K. Wu:Metall. Trans. A, 1993, vol. 24A, pp. 293–99.

    CAS  Google Scholar 

  7. T. Honma:Proc. ICOMAT-86, The Japan Institute of Metals, Sendai, 1986, pp. 709–16.

    Google Scholar 

  8. D.Y. Li, F. Wu, and T. Ko:Phil. Mag., 1991, vol. 63A, pp. 603–16.

    Google Scholar 

  9. V. Raghavan and M. Cohen:Acta Metall., 1972, vol. 20, p. 779–86.

    Article  CAS  Google Scholar 

  10. G.B. Olson and M. Cohen:Scripta Metall., 1975, vol. 9, pp. 1247–54.

    Article  CAS  Google Scholar 

  11. G.B. Olson and M. Cohen:Scripta Metall., 1977, vol. 11, pp. 345–47.

    Article  CAS  Google Scholar 

  12. R.J. Wasilewski:Metall. Trans., 1971, vol. 2, pp. 2973–81.

    CAS  Google Scholar 

  13. S. Miyazaki, K. Otsuka, and CM. Wayman:Acta Metall., 1989, vol. 37, pp. 1873–90.

    Article  CAS  Google Scholar 

  14. T. Fukuda, T. Saburi, K. Doi, and S. Nenno:Mater. Trans. Jpn. Inst. Met., 1992, vol. 33, pp. 271–77.

    CAS  Google Scholar 

  15. S. Miyazaki and K. Otsuka:Metall. Trans. A, 1986, vol. 17A, pp. 53–63.

    CAS  Google Scholar 

  16. H.C. Lin, S.K. Wu, T.S. Chou, and H.P. Kao:Acta Metall., 1991, vol. 39, pp. 2069–80.

    Article  CAS  Google Scholar 

  17. J. Beyer:J. Phys., 1982, vol. 43, pp. C4–273-C4–278.

    Google Scholar 

  18. R. Kainuma, M. Matsumoto, and T. Honma:Proc. ICOMAT-86, The Japan Institute of Metals, Sendai, 1986, pp. 717–22.

    Google Scholar 

  19. T. Saburi, T. Tatsumi, and S. Nenno:J. Phys., 1982, vol. 43, pp. C4–261-C4–266.

    Google Scholar 

  20. T.W. Duerig and K.N. Melton: inThe Martensitic Transformation in Science and Technology, E. Hombogen and N. Jost, eds., DGM Verlag, Oberursel, Germany, 1989, pp. 191–98.

    Google Scholar 

  21. M. Piao, S. Miyazaki, K. Otsuka, and N. Nishida:Mater. Trans. Jpn. Inst. Met., 1992, vol. 33, pp. 337–45.

    CAS  Google Scholar 

  22. T.M. Poletika, S.N. Kul’kov, and V.E. Panin:Poroshkovaya Metallurgiya, 1983, vol. 7 (247), pp. 54–59.

    Google Scholar 

  23. S.N. Kul’kov, T.M. Poletika, A.Y. Chukhlomin, and V.E. Panin:Poroshkovaya Metallurgiya, 1984, vol. 8 (260), pp. 88–92.

    Google Scholar 

  24. K.L. Fukami-Ushiro, D. Mari, and D.C Dunand:Metall. Mater. Trans. A, in print.

  25. K.L. Fukami-Ushiro and D.C. Dunand:Metall. Mater. Trans. A, in print.

  26. W.A. Johnson, J.A. Dominigue, and S.H. Reichman:J. Phys., 1982, vol. 43, pp. C4–285-C4–290.

    Google Scholar 

  27. W.A. Johnson, J.A. Dominigue, S.H. Reichman, and F.E. Sczerzenie:J. Phys., 1982, vol. 43, pp. C4–291-C4–296.

    Google Scholar 

  28. T. Honma: inShape Memory Alloys, H. Funakubo, ed., Gordon and Breach, New York, NY, 1987.

    Google Scholar 

  29. T. Todoroki: inEngineering Aspects of Shape Memory Alloys, T.W. Duerig, ed., Butterworth and Co., London, 1990, pp. 315–29.

    Google Scholar 

  30. J.S. Zhu and R. Gotthardt:Phys. Lett., 1988, vol. 132A, pp. 279–82.

    Google Scholar 

  31. D. Favier, Y. Liu, and P.G. McCormick:Scripta Metall. Mater., 1993, vol. 28, pp. 669–72.

    Article  CAS  Google Scholar 

  32. L. Bataillard and R. Gotthardt:Proc. Solid → Solid Phase Transformations in Inorganic Materials, W.C. Johnsonet al., eds., TMS, Warrendale, PA, 1994, pp. 761–66.

    Google Scholar 

  33. S. Miyazaki, Y. Igo, and K. Otsuka:Acta Metall., 1986, vol. 34, pp. 2045–51.

    Article  CAS  Google Scholar 

  34. P.G. McCormick and Y. Liu:Acta Metall. Mater., 1994, vol. 42, pp. 2407–13.

    Article  CAS  Google Scholar 

  35. D.Y. Li, F. Wu, and T. Ko:Phil. Mag., 1991, vol. 63A, pp. 585–601.

    Google Scholar 

  36. M.A.M. Bourke, J.A. Goldstone, M.G. Stout, and A. Needleman: inFundamentals of Metal Matrix Composites, S. Suresh, A. Mortensen, and A. Needleman, eds., Butterworth-Heinemann, Boston, 1993, pp. 61–80.

    Google Scholar 

  37. T.W. Clyne and P.J. Withers:An Introduction to Metal Matrix Composites, Cambridge University Press, Cambridge, United Kingdom, 1993.

    Google Scholar 

  38. T. Kakeshita, K. Shimizu, S. Nakamichi, R. Tanaka, S. Endo, and F. Ohio:Mater. Trans. Jpn. Inst. Met., 1992, vol. 33, pp. 1–6.

    CAS  Google Scholar 

  39. C.T. Kim, J.K. Lee, and M.R. Plichta:Metall. Trans. A, 1990, vol. 21A, pp. 673–82.

    CAS  Google Scholar 

  40. T.H. Nam, T. Saburi, and K. Shimizu:Mater. Trans. Jpn. Inst.Met. 1991, vol. 33, pp. 814–20.

    Google Scholar 

  41. R.J. Salzbrenner and M. Cohen:Acta Metall., 1979, vol. 27, pp. 739–48.

    Article  CAS  Google Scholar 

  42. A. Hedayat, J. Rechtien, and K. Mukherjee:J. Mater. Sci., 1992, vol. 27, pp. 5306–14.

    Article  CAS  Google Scholar 

  43. L. Lü, M.O. Lai, Y.B. Liu, and S.C. Lim:Proc. ICCM-9, A. Miravete, ed., Zaragoza University, Spain, 1993, vol. 2, pp. 419–24.

    Google Scholar 

  44. J. Stoiber, B. Guisolan, and R. Gotthardt:Ultramicroscopy, 1993, vol. 49, pp. 37–45.

    Article  CAS  Google Scholar 

  45. G. Airoldi and G. Riva: inThe Martensitic Transformation in Science and Technology, E. Hornbogen and N. Jost, eds., DGM-Verlag, Oberursel, Germany, 1989, pp. 305–12.

    Google Scholar 

  46. K. Madangopal, S. Banerjee, and S. Lee:Acta Metall. Mater., 1994, vol. 42, pp. 1875–85.

    Article  CAS  Google Scholar 

  47. J. Ortin and A. Planes:Acta Metall, 1988, vol. 36, pp. 1873–89.

    Article  CAS  Google Scholar 

  48. A. Munier, J.E. Bidaux, and R. Schaller:J. Mater. Res., 1990, vol. 5, pp. 769–75.

    CAS  Google Scholar 

  49. G. Schoek:Phys. Status Solidi, 1965, vol. 8, pp. 499–512.

    Article  Google Scholar 

  50. D.C. Dunand and A. Mortensen:Acta Metall. Mater., 1991, vol. 39, pp. 127–39.

    Article  CAS  Google Scholar 

  51. D.C. Dunand and A. Mortensen:Mater. Sci. Eng. A, 1991, vol. 135A, pp. 179–84.

    Google Scholar 

  52. D.C. Dunand, D. Mari, M.A.M. Bourke, J.A. Goldstone,J Phys., in print.

  53. T.M. Brill, S. Mittelbach, W. Assmus, M. Mullner, and B. Luthi:J. Phys.: Condens. Mater., 1991, vol. 3, pp. 9621–27.

    Article  CAS  Google Scholar 

  54. R. Chang and L.J. Graham:J. Appl. Phys., 1966, vol. 37, pp. 3778–83.

    Article  CAS  Google Scholar 

  55. CM. Jackson, H.J. Wagner, and R.J. Wasilewski: NASA-SP 5110, 1972, p. 49.

  56. The CRC Materials Science and Engineering Book, J. Shackelford and W. Alexander, eds., CRC Press, Boca Raton, FL, 1992, p. 358.

    Google Scholar 

  57. C.M. Wayman and H.C. Tong:Scripta Metall, 1977, vol. 11, pp. 341–43.

    Article  CAS  Google Scholar 

  58. W. Bührer, R. Gotthardt, A. Kulik, and O. Mercier:J. Phys., 1982, vol. 43, pp. 219–24.

    Google Scholar 

  59. O. Matsumoto, S. Miyazaki, K. Otsuka, and H. Tamura:Acta Metall, 1987, vol. 35, pp. 2137–44.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Formerly Postdoctoral Fellow, Department of Materials Science and Engineering, Massachusetts Institute of Technology.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mari, D., Dunand, D.C. NiTi and NiTi-TiC composites: Part 1. transformation and thermal cycling behavior. Metall Mater Trans A 26, 2833–2847 (1995). https://doi.org/10.1007/BF02669642

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02669642

Keywords

Navigation