Skip to main content
Log in

The effect of hydrogen on the yield and flow stress of an austenitic stainless steel

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Tensile tests on 310s stainless steel foils, with and without hydrogen, were conducted at temperatures from 77 to 295 K and strain rates from 10-3 to 10-6/s. Cathodic charging at elevated temperatures and at very low current densities was used to produce homogeneous solid solutions of hydrogen in this material. The yield stress and flow stress were found to increase with hydrogen content. Discontinuous yielding was observed at room temperature for specimens with hydrogen contents greater than 5 at. pct. The ductility, as measured by the strain to failure, was not critically dependent on hydrogen concentration at 77 and 295 K but was reduced at intermediate temperatures. The changes in mechanical behavior are discussed in terms of hydrogen-dislocation interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Matsui, H. Kimura, and S. Moriya:Mater. Sci. Eng., 1979, vol. 40, p. 207.

    Article  CAS  Google Scholar 

  2. S. Moriya, H. Matsui, and H. Kimura:Mater. Sci. Eng., 1979, vol. 40, p. 217.

    Article  CAS  Google Scholar 

  3. H. Matsui, H. Kimura, and A. Kimura:Maler. Sci. Eng., 1979, vol. 40, p. 227.

    Article  CAS  Google Scholar 

  4. A. Kimura and H.K. Birnbaum:Scripta Metall., 1987, vol. 21, p. 53.

    Article  CAS  Google Scholar 

  5. I.M. Bernstein:Scripta Metall., 1974, vol. 8, p. 343.

    Article  CAS  Google Scholar 

  6. E. Lunarska: inHydrogen Degradation of Ferrous Alloys, R.A. Oriani, J.P. Hirth, and M. Smialowski, eds., Noyes Publications, Park Ridge, NJ, 1985, p. 321.

    Google Scholar 

  7. E. Sirois and H.K. Birnbaum:Acta Metall, 1992, vol. 40, p. 1377.

    Article  CAS  Google Scholar 

  8. I.M. Robertson and H.K. Birnbaum:Acta Metall, 1986, vol. 34, p. 353.

    Article  CAS  Google Scholar 

  9. P. Rozenak, I.M. Robertson, and H.K. Birnbaum:Acta Metall., 1990, vol. 38, p. 2031.

    Article  CAS  Google Scholar 

  10. G. Bond, I.M. Robertson, and H.K. Birnbaum:Acta Metall., 1988, vol. 36, p. 2193.

    Article  CAS  Google Scholar 

  11. I.M. Robertson, T. Tabata, W. Wei, F. Heubaum, and H.K. Birnbaum:Scripta Metall, 1984, vol. 18, p. 841.

    Article  CAS  Google Scholar 

  12. T. Boniszewski and G.C. Smith:Acta Metall, 1963, vol. 11, p. 165.

    Article  CAS  Google Scholar 

  13. J.W. Watson, Y.Z. Shen, and M. Meshii:Metall. Trans. A, 1988, vol. 19A, pp. 2299–2304.

    CAS  Google Scholar 

  14. A.J. West and M.R. Louthan, Jr.:Metall. Trans. A, 1982, vol. 13A, pp. 2049–58.

    Google Scholar 

  15. G.R. Caskey, Jr.:Scripta Metall., 1981, vol. 15, p. 1183.

    Article  CAS  Google Scholar 

  16. J.H. Holbrook and A.J. West: in I.M. Bernstein and A.W. Thompson, eds., TMS-AIME, New York, NY, 1981, p. 655.

  17. S. Asano and R. Otsuka:Scripta Metall., 1976, vol. 10, p. 1015.

    Article  CAS  Google Scholar 

  18. S. Asano and R. Otsuka:Scripta Metall., 1978, vol. 12, p. 287.

    Article  CAS  Google Scholar 

  19. M. Cornet and S. Talbot-Besnard:Jpn. Inst. Metall. Suppl., 1980, vol. 21, p. 5454.

    Google Scholar 

  20. J. Burke, A. Jickels, P. Maulik, and L. Mehta: inEffect of Hydrogen on the Behavior of Metals, A.W. Thompson and I.M. Bernstein, eds., TMS-AIME, Warrendale, PA, 1976, p. 102.

    Google Scholar 

  21. D.G. Ulmer and C.J. Altstetter:Acta Metall, 1991, vol. 28, p. 1237.

    Article  Google Scholar 

  22. S.M. Myers, M.I. Baskes, H.K. Birnbaum, J.W. Corbett, G.G. DeLeo, S.K. Estreicher, E.E. Haller, P. Jena, N.M. Johnson, R. Kirchheim, S.J. Pearton, and M.J. Stavola:Rev. Modern Phys., 1992, vol. 64, p. 559.

    Article  CAS  Google Scholar 

  23. J.P. Hirth: inHydrogen Degradation of Ferrous Alloys, R.A. Oriani, J.P. Hirth, and M. Smialowski, eds., Noyes Publications, Park Ridge, NJ, 1985, p. 131.

    Google Scholar 

  24. A.P. Bentley and G.C. Smith:Scripta Metall., 1986, vol. 20, p. 729.

    Article  CAS  Google Scholar 

  25. A.P. Bentley and G.C. Smith:Mater. Sci. Technol, 1986, vol. 2, p. 1140.

    CAS  Google Scholar 

  26. M.B. Whiteman and A.R. Troiano:Corrosion, 1965, vol. 21, p. 53.

    CAS  Google Scholar 

  27. R.B. Benson, R.K. Dann, and L.W. Roberts:Trans. TMS-AIME, 1968, vol. 242, p. 2199.

    CAS  Google Scholar 

  28. M.L. Holzworth:Corrosion, 1969, vol. 25, p. 107.

    CAS  Google Scholar 

  29. M.R. Louthan, Jr., J.A. Donovan, and D.E. Rawl, Jr.:Corrosion, 1973, vol. 29, p. 108.

    CAS  Google Scholar 

  30. C.L. Briant:Metall. Trans. A, 1979, vol. 10A, pp. 181–89.

    CAS  Google Scholar 

  31. D. Eliezer: inHydrogen Effects on Material Behavior, N.R. Moody and A.W. Thompson, eds., TMS, Warrendale, PA, 1990, p. 399.

    Google Scholar 

  32. T.-P. Perng and C.J. Altstetter:Mater. Sci. Eng., 1990, vol. A129, p. 99.

    CAS  Google Scholar 

  33. J.A. Peterson, R. Gibala, and A.R. Troiano:J. Iron Steel Inst., 1969, vol. 1, p. 86.

    Google Scholar 

  34. A.W. Thompson and I.M. Bernstein:Adv. Corros. Sci. Technol, 1980, vol. 7, p. 53.

    CAS  Google Scholar 

  35. T.-P. Perng and C.J. Altstetter:Acta Metall., 1986, vol. 34, p. 1771.

    Article  CAS  Google Scholar 

  36. D.P. Abraham and C.J. Altstetter:Metall. Mater. Trans. A, 1995, vol. 26A, pp. 2859–2871.

    CAS  Google Scholar 

  37. J.A. Leistra and P.J. Sides:J. Electrochem. Soc., 1987, vol. 134, p. 2442.

    Article  CAS  Google Scholar 

  38. J. Dukovic and C.W. Tobias:J. Electrochem. Soc., 1987, vol. 134, p. 331.

    Article  CAS  Google Scholar 

  39. R.J. Coyle, A. Atrens, N.F. Fiore, J.J. Bellina, and M. Jolies: inEnvironment Sensitive Fracture of Engineering Materials,Z.A. Fouroulis, ed., TMS-AIME, Warrendale, PA, 1979, p. 431.

    Google Scholar 

  40. D.G. Ulmer and C.J. Altstetter:Acta Metall. Mater., 1993, vol. 41, p. 2235.

    Article  CAS  Google Scholar 

  41. J. Crank:The Mathematics of Diffusion, Clarendon Press, Oxford, United Kingdom, 1956, p. 42.

    Google Scholar 

  42. H. Shih and H.W. Pickering:J. Electrochem. Soc., 1987, vol. 134, p. 551.

    Article  CAS  Google Scholar 

  43. G.E. Dieter:Mechanical Metallurgy, McGraw-Hill Publishing Co., New York, NY, 1976, p. 341.

    Google Scholar 

  44. T.H. Courtney:Mechanical Behavior of Metals, McGraw-Hill Publishing Company, New York, NY, 1990, pp. 80–85.

    Google Scholar 

  45. R.L. Fleischer: inThe Strengthening of Metals, D. Peckner, ed., Reinhold Publishing Company, New York, NY, 1964, p. 114.

    Google Scholar 

  46. K. Oda, N. Kondo, and K. Shibata:Iron Steel Inst. Jpn. Inst., 1990, vol. 30, p. 625.

    CAS  Google Scholar 

  47. R.P. Reed:J. Met., 1989, Mar., p. 16.

    Google Scholar 

  48. H.M. Ledbetter and M.W. Austin:Mater. Sci. Technol., 1987, vol. 3, p. 101.

    CAS  Google Scholar 

  49. E. Ligeon, R. Danielou, and J. Fontenille:J. Appl. Phys., 1986, vol. 59, p. 108.

    Article  CAS  Google Scholar 

  50. S.M. Myers, W.R. Wampler, and F. Besenbacher:J. Appl. Phys., 1984, vol. 56, p. 1561.

    Article  CAS  Google Scholar 

  51. S.T. Picraux:Nucl. Instrum. Methods, 1981, vol. 182-183, p. 413.

    Article  CAS  Google Scholar 

  52. Table of Periodic Properties of the Elements, Catalog No. S-18806, E.H. Sargent and Co., Chicago, IL, 1964.

  53. K. Tanaka, T. Inukai, K. Uchida, and M. Yamada:J. Appl. Phys., 1983, vol. 54, p. 6890.

    Article  CAS  Google Scholar 

  54. J.P. Hirth and J. Lothe:Theory of Dislocations, Wiley Publishing Co., New York, NY, 1982.

    Google Scholar 

  55. M.R. Louthan, Jr., G.R. Caskey, J.A. Donavan, and D.E. Rawl, Jr.:Mater. Sci. Eng., 1972, vol. 10, p. 357.

    Article  CAS  Google Scholar 

  56. M.R. Louthan, Jr.: inHydrogen in Metals, I.M. Bernstein andA.W. Thompson, eds., ASM, Metals Park, OH, 1974, p. 53.

    Google Scholar 

  57. A.H. Cottrell:Dislocations and Plastic Flow in Crystals, Clarendon Press, Oxford, United Kingdom, 1953, p. 134.

    Google Scholar 

  58. A.H. Cottrell and B.A. Bilby:Proc Phys. Soc. London, 1949, vol. A62, p. 49.

    Google Scholar 

  59. D.N. Beshers:Acta Metall., 1958, vol. 6, p. 521.

    Article  CAS  Google Scholar 

  60. D. Hull and D.J. Bacon:Introduction to Dislocations, Pergamon Press, Oxford, United Kingdom, 1984, p. 225.

    Google Scholar 

  61. E. Sirois, P. Sofronis, and H.K. Birnbaum:Fundamental Aspects of Stress Corrosion Cracking, Parkins Symp., S.M. Bruemmer,E.I. Meletis, R.H. Jones, W.W. Gerberich, F.P. Ford, and R.W. Staehle, eds., TMS, Warrendale, PA, 1992, p. 173.

    Google Scholar 

  62. F.R.N. Nabarro:Theory of Crystal Dislocations, Dover Publications, 1987, pp. 430–75.

  63. N. Narita, C.J. Altstetter, and H.K. Birnbaum:Metall. Trans. A, 1982, vol. 13A, pp. 1355–65.

    Google Scholar 

  64. J.W. Steeds:Proc. R. Soc., 1966, vol. A292, p. 343.

    Google Scholar 

  65. J.P. Hirth and B. Carnahan:Acta Metall., 1978, vol. 26, p. 1795.

    Article  CAS  Google Scholar 

  66. R. Kirchheim, X.Y. Huang, H.-D. Carstanjen, and J.J. Rush: inChemistry and Physics of Fracture, R.M. Latanision and R.H. Jones, eds., 1987, p. 580.

  67. R. Kirchheim:Acta Metall., 1981, vol. 29, p. 845.

    Article  CAS  Google Scholar 

  68. A. Kimura and H.K. Birnbaum:Acta Metall., 1987, vol. 35, p. 1077.

    Article  CAS  Google Scholar 

  69. P.A. Beaven and E.P. Butler:Acta Metall., 1980, vol. 28, p. 1349.

    Article  CAS  Google Scholar 

  70. A. Bourett and C. Colliex:Ultramicroscopy, 1982, vol. 9, p. 183.

    Article  Google Scholar 

  71. W.H. Johnston and J.J. Gilman:J. Appl. Phys., 1959, vol. 30, p. 129.

    Article  CAS  Google Scholar 

  72. G.T. Hahn:Acta Metall., 1962, vol. 10, p. 727.

    Article  Google Scholar 

  73. H.C. Rogers:Acta Metall., 1954, vol. 2, p. 167.

    Google Scholar 

  74. H.C. Rogers:Acta Metall., 1957, vol. 5, p. 112.

    Article  Google Scholar 

  75. H.C. Rogers:Acta Metall., 1956, vol. 4, p. 114.

    Article  CAS  Google Scholar 

  76. F. de Kazinczy:Acta Metall., 1959, vol. 7, p. 706.

    Article  Google Scholar 

  77. A. Lawley, W. Liebmann, and R. Maddin:Acta Metall., 1961, vol. 9, p. 841.

    Article  CAS  Google Scholar 

  78. C.J. Guntner and R.P. Reed:Trans. ASM, 1962, vol. 55, p. 399.

    CAS  Google Scholar 

  79. J. Eastman, F. Heubaum, T. Matsumoto, and H.K. Birnbaum:Acta Metall, 1982, vol. 30, p. 1579.

    Article  CAS  Google Scholar 

  80. D. Kuhlmann-Wilsdorf:Mater. Sci. Eng., 1989, vol. Al 13, p. 1.

    Google Scholar 

  81. U.F. Kocks:Metall. Trans. A, 1985, vol. 16A, pp. 2109–29.

    CAS  Google Scholar 

  82. U.F. Kocks, A.S. Argon, and M.F. Ashby:Progress in Materials Science, Pergamon Press, Oxford, United Kingdom, 1975, vol. 19.

    Google Scholar 

  83. F.R.N. Nabarro: inThe Mechanics of Dislocations, E.C. Aifantis and J.P. Hirth, eds., ASM, Metals Park, OH, 1985.

    Google Scholar 

  84. A.R. Troiano:Trans. ASM, 1960, vol. 52, p. 151.

    Google Scholar 

  85. J.H. Huang and C.J. Altstetter:Metall Trans. A, 1991, vol. 22A, pp. 2605–18.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Formerly Graduate Student, Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Abraham, D.P., Altstetter, C.J. The effect of hydrogen on the yield and flow stress of an austenitic stainless steel. Metall Mater Trans A 26, 2849–2858 (1995). https://doi.org/10.1007/BF02669643

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02669643

Keywords

Navigation