Skip to main content
Log in

The effect of grain size on the high-strain, high-strain-rate behavior of copper

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Copper with four widely differing grain sizes was subjected to high-strain-rate plastic deformation in a special experimental arrangement in which high shear strains of approximately 2 to 7 were generated. The adiabatic plastic deformation produced temperature rises in excess of 300 K, creating conditions favorable for dynamic recrystallization, with an attendant change in the mechanical response. Preshocking of the specimens to an amplitude of 50 GPa generated a high dislocation density; twinning was highly dependent on grain size, being profuse for the 117- and 315-μm grain-size specimens and virtually absent for the 9.5-μm grain-size specimens. This has a profound effect on the subsequent mechanical response of the specimens, with the smaller grain-size material undergoing considerably more hardening than the larger grain-size material. A rationale is proposed which leads to a prediction of the shock threshold stress for twinning as a function of grain size. The strain required for localization of plastic deformation was dependent on the combined grain size/shockinduced microstructure, with the large grain-size specimens localizing more readily. The experimental results obtained are rationalized in terms of dynamic recrystallization, and a constitutive equation is applied to the experimental results; it correctly predicts the earlier onset of localization for the large grain-size specimens. It is suggested that the grain-size dependence of shock response can significantly affect the performance of shaped charges.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Feltham and J.D. Meakin:Phil. Mag., 1957, vol. 2, p. 105.

    Article  CAS  Google Scholar 

  2. SX. Wang and L.E. Murr:Metallurgy, 1980, vol. 13, pp. 203–24.

    CAS  Google Scholar 

  3. F.J. Zerilli and R.W. Armstrong:J. Appl. Phys., 1987, vol. 61, pp. 1816–25.

    Article  CAS  Google Scholar 

  4. A.S. Shume, Y.J. Chang, and M.N. Bassim:Mater. Sci. Eng., 1989, vol. A108, pp. 241–45.

    CAS  Google Scholar 

  5. W.H. Gourdin and D.H. Lassila:Acta Metall. Mater., 1991, vol. 39, pp. 2337–48.

    Article  CAS  Google Scholar 

  6. W.H. Gourdin and D.H. Lassila:Mater. Sci. Eng., 1992, vol. A151, pp. 11–18.

    CAS  Google Scholar 

  7. A.H. Chokshi, A. Rosen, J. Karch, and H. Gleiter:Scripta Metall., 1989, vol. 23 (10), pp. 1679–84.

    Article  CAS  Google Scholar 

  8. C.G. Schmidt, Robert D. Caligiuri, Jacques H. Giovanola, and David C. Erlich:Metall. Trans. A, 1991, vol. 22A, pp. 2349–57.

    CAS  Google Scholar 

  9. M.P. Bondar’ and V.F. Nesterenko:J. Phys. IV, 1991, vol. 1 (c3), pp. 163–70.

    Google Scholar 

  10. V.F. Nesterenko, M.P. Bondar’, and I.V. Ershov: inHigh-Pressure Science and Technology—1993, S.C. Schmitt, J.W. Shaner,G.A. Samara, and M. Ross, eds., AIP Press, New York, NY, 1994, pp. 173–76.

    Google Scholar 

  11. U.R. Andrade: Ph.D. Thesis, University of California, San Diego, CA, 1993.

    Google Scholar 

  12. U.R. Andrade, M.A. Meyers, A.H. Chokshi, and K.S. Vecchio:J. Phys. IV, 1994, vol. 4 (c8), pp. 361–66.

    Google Scholar 

  13. W.P. Walters and J.A. Zukas:Fundamentals of Shaped Charges, Wiley Interscience, New York, NY, 1989, p. 2.

    Google Scholar 

  14. M. Lichtenberger, M. Scharf, and A. Bohman: Report No. CO 218/81, French-German Research Institute, Saint-Louis, France, (ISL), Sept. 1981.

  15. W.H. Gourdin: inShock-Wave and High-Strain-Rate Phenomena in Materials, M.A. Meyers, L.E. Murr, and K.P. Staudhammer, eds., Marcel Dekker, New York, NY, 1992, pp. 597–609.

    Google Scholar 

  16. W.H. Gourdin: inShock-Wave and High-Strain-Rate Phenomena in Materials, M.A. Meyers, L.E. Murr, and K.P. Staudhammer, eds., Marcel Dekker, New York, NY, 1992, pp. 611–16.

    Google Scholar 

  17. A.C. Gurevitch, L.E. Murr, W.W. Fisher, S.K. Varma, A.H. Advani, and L. Zernow:Mater. Charact., 1993, vol. 30, pp. 201–16.

    Article  CAS  Google Scholar 

  18. M.A. Meyers, L.W. Meyer, J. Beatty, U.R. Andrade, K.S. Vecchio, and A.H. Chokshi: inShock-Wave and High-Strain-Rate Phenomena in Materials, M.A. Meyers, L.E. Murr, and K.P. Staudhammer, eds., Marcel Dekker, New York, NY, 1992, pp. 529–42.

    Google Scholar 

  19. A.H. Chokshi and M.A. Meyers:Scripta Metall. Mater., 1990, vol. 24, pp. 605–10.

    Article  CAS  Google Scholar 

  20. U.R. Andrade, M.A. Meyers, K.S. Vecchio, and A.H. Chokshi:Acta Metall. Mater., 1994, vol. 42, pp. 3183–95.

    Article  CAS  Google Scholar 

  21. R.E. Reed-Hill and R. Abbaschian:Physical Metallurgy Principles, PWS-Kent, Boston, 1992, pp. 250 and 259.

  22. I.M. Ghauri, M.Z. Butt, and S.M. Raza:J. Mater. Sci., 1990, vol. 25, pp. 4782–84.

    Article  CAS  Google Scholar 

  23. M.A. Mogilevsky and L.A. Teplyakova: inMetallurgical Applications of Shock-Wave and High-Strain Rate Phenomena, L.E. Murr, K.P. Staudhammer, and M.A. Meyers, eds., Marcel Dekker, 1986, pp. 419–27.

  24. G.T. Gray III: inHigh Pressure Shock Compression of Solids,J.R. Asay and M. Shahinpoor, eds., Springer-Verlag, New York, NY, 1993, pp. 187–215.

    Google Scholar 

  25. P.S. DeCarli and M.A. Meyers: inShock-Wave and High-Strain-Rate Phenomena in Metals, M.A. Meyers and L.E. Murr, eds., Plenum Press, New York, NY, 1981, pp. 341–73.

    Google Scholar 

  26. K.-H. Hartmann, H.-D. Kunze, and L.W. Meyer: inShock Waves and High-Strain-Rate Phenomena in Metals, M.A. Meyers and L.E. Murr, eds., Plenum Press New York, NY, 1981, pp. 325–37.

    Google Scholar 

  27. L.W. Meyer and S. Manwaring: inMetallurgical Applications of Shock-Wave and High-Strain-Rate Phenomena, L.E. Murr,K.P. Staudhammer, M.A. Meyers, eds., Marcel Dekker, New York, NY, 1986, pp. 657–74.

    Google Scholar 

  28. H. Kolsky:Proc. R. Soc. B, 1949, vol. 62, pp. 676–700.

    Google Scholar 

  29. S. Nemat-Nasser, J.B. Isaacs, and J.E. Starrett:Proc. R. Soc. London A, 1991, vol. 435, pp. 371–91.

    Article  Google Scholar 

  30. S. Nemat-Nasser, J.B. Isaacs, G. Ravichandran, and J.E. Starrett:Proc. of TTCP Workshop on New Techniques of Small Scale High Strain Rate Studies, Australia, 1989, p. 343.

  31. J.R. Klepaczko:J. Phys., 1988 vol. 49 (c3), pp. 553–60.

    Google Scholar 

  32. P.S. Follansbee and U.F. Kocks:Acta Metall., 1988, vol. 36, pp. 81–93.

    Article  Google Scholar 

  33. W. Tong, R.J. Clifton, and S. Huang:J. Meck Phys. Solids, 1992, vol. 40, pp. 1251–94.

    Article  CAS  Google Scholar 

  34. E.O. Hall:Proc. R. Soc., 1951, vol. B64, pp. 742–53.

    CAS  Google Scholar 

  35. N.J. Petch:J. Iron Steel Inst., 1953, vol. 174, pp. 25–28.

    CAS  Google Scholar 

  36. J.J. Gracio, J.V. Fernandes, and J.H. Schmitt:Mater. Sci. Eng., 1989, vol. Al18, pp. 97–105.

    Google Scholar 

  37. G.T. Gray III and P.S. Follansbee: inImpact Loading and Dynamic Behavior of Materials, C.Y. Chiem, H.D. Kunze, and L.W. Meyer, eds., Informationsgellsshaft, Verlag, Germany 1988, p. 541–548.

    Google Scholar 

  38. Marc A. Meyers and R. Norman Orava:Metall. Trans. A, 1976, vol. 7A, pp. 179–90.

    CAS  Google Scholar 

  39. R.G. McQueen and S.P. Marsh:J. Appl. Phys., 1960, vol. 31, p. 253.

    Article  Google Scholar 

  40. F. Haessner and K. Sztwiertnia:Scripta Metall., 1992, vol. 27, pp. 1545–50.

    Article  CAS  Google Scholar 

  41. H.J. Kestenbach and Marc A. Meyers:Metall. Trans. A, 1976, vol. 7A, pp. 1943–50.

    CAS  Google Scholar 

  42. K. Wongwiwat and L.E. Murr:Mater. Sci. Eng., 1978, vol. 35, pp. 273–85.

    Article  CAS  Google Scholar 

  43. S. Mahajan and D.E. Williams:Int. Metall. Rev., 1973, vol. 18, pp. 43–61.

    CAS  Google Scholar 

  44. G.T. Gray III: inEncyclopedia of Material Science and Engineering, Pergamon Press, Oxford, United Kingdom, 1990, suppl., vol. 2, pp. 859–66.

    Google Scholar 

  45. J.W. Christian and S. Mahajan: inProgress in Materials Science, 1995, in press.

  46. M.J. Marcinkowski and H.A. Lipsitt:Acta Metall., 1962, vol. 10, p. 95.

    Article  CAS  Google Scholar 

  47. W.S. Owen and D. Hull: inRefractory Metals and Alloys II, M. Semdryshen and I. Perlmutter, eds., Interscience, New York, NY, 1963, p. 1.

    Google Scholar 

  48. R.W. Armstrong and F.J. Zerilli:J. Phys., 1988, vol. 49 (c3), pp. 529–34.

    Google Scholar 

  49. S. Mahajan and G.Y. Chin:Acta Metall., 1973, vol. 21, pp. 1353–63.

    Article  CAS  Google Scholar 

  50. R.W. Armstrong and P.J. Worthington: inMetallurgical Effects at High Strain Rates, R.W. Rohde, B.M. Butcher, J.R. Holland, and C.H. Arnes, eds., Plenum Press, New York, NY, 1973, pp. 401–14.

    Google Scholar 

  51. M.A. Meyers and L.E. Murr: inShock Waves and High-Strain Rate Phenomena in Metals, M.A. Meyers and L.E. Murr, eds., Plenum Press, New York, NY, 1981, pp. 487–530.

    Google Scholar 

  52. M.A. Meyers and V.F. Nesterenko: in preparation (1995).

  53. R.W. Armstrong: inDeformation Twinning, R.E. Reed-Hill, J.P. Hirth, and H.C. Rogers, eds., Gordon and Breach Science Publications, New York, NY, 1964, p. 356.

    Google Scholar 

  54. L.E. Murr: inShock Waves and High-Strain-Rate Phenomena in Metals, M.A. Meyers and L.E. Murr, eds., Plenum Press, New York, NY, 1981, pp. 607–673.

    Google Scholar 

  55. R.F. Recht:J. Appl. Mech., 1964, vol. 31, pp. 189–93.

    Google Scholar 

  56. R.S. Culver: inMetallurgical Effects at High Strain Rates, R.W. Rohde, B.M. Butcher, J.R. Holland, and C.H. Karnes, eds., Plenum Press, New York, NY, 1973, pp. 519–30.

    Google Scholar 

  57. G.R. Johnson and W.H. Cook: inProc. 7th Int. Symp. on Ballistics, The Hague, The Netherlands, 1983, pp. 541–47.

    Google Scholar 

  58. L.E. Murr and D. Kuhlmann-Wilsdorf:Acta Metall., 1978, vol. 26, pp. 847–57.

    Article  CAS  Google Scholar 

  59. B. Derby:Acta Metall. Mater., 1991, vol. 39, pp. 955–62.

    Article  CAS  Google Scholar 

  60. N.Y. Tang, P. Niessen, R.J. Pick, and M.J. Worswick:Mater. Sci. Eng., 1991, vol. A131, pp. 153–60.

    CAS  Google Scholar 

  61. V.F. Nesterenko and M.P. Bondar:DYMATJ., 1994, vol. 1, pp. 245–51.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Formerly with the Department of Applied Mechanics and Engineering Sciences, University of California.

Formerly with the Department of Applied Mechanics and Engineering Sciences.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Meyers, M.A., Andrade, U.R. & Chokshi, A.H. The effect of grain size on the high-strain, high-strain-rate behavior of copper. Metall Mater Trans A 26, 2881–2893 (1995). https://doi.org/10.1007/BF02669646

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02669646

Keywords

Navigation