Skip to main content
Log in

Layer-growth kinetics on gaseous nitriding of pure iron: Evaluation of diffusion coefficients for nitrogen in iron nitrides

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Models were derived for monolayer and bilayer growth into a substrate in which diffusion of the solute governs the growth kinetics, as in gas-solid reactions, for example. In the models, the composition dependence of the solute diffusivity in the phases constituting the layers was accounted for by appropriate definition of an effective diffusion coefficient for a (sub)layer. This effective diffusion coefficient is the intrinsic diffusion coefficient weighted over the composition range of the (sub)layer. The models were applied for analyzing the growth kinetics of a γ′-Fe4N1-x monolayer on an α-Fe substrate and the growth kinetics of an ε-Fe2N1-z/γ′-Fe4N1-x bilayer on an α-Fe substrate, as observed by gaseous nitriding in an NH3/H2-gas mixture at 843 K. The kinetics of layer development and the evolution of the microstructure were investigated by means of thermogravimetry, layer-thickness measurements, light microscopy, and electron probe X-ray microanalysis (EPMA). The effective and self-diffusion coefficients were determined for each of the nitride layers. The composition dependence of the intrinsic (and effective) diffusion coefficients was established. Re-evaluating literature data for diffusion in γ′-Fe4N1-x on the basis of the present model, it followed that the previous and present data are consistent. The activation energy for diffusion of nitrogen in γ′-Fe4N1-x was determined from the temperature dependence of the self-diffusion coefficient. The self-diffusion coefficient for nitrogen in ε-Fe2N1-z was significantly larger than that for γ′-Fe4N1-x. This was explained qualitatively, considering the possible mechanisms for interstitial diffusion of nitrogen atoms in the close-packed iron lattices of the ε and γ′ iron nitrides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Bell:Heat Treat. Met., 1975, vol. 2, pp. 39–49.

    CAS  Google Scholar 

  2. K. Sachs and D.B. Clayton:Heat Treat. Met., 1979, vol. 6, pp. 29–34.

    CAS  Google Scholar 

  3. Ya.D. Kogan and A.A. Bulgach:Metalloved. Term. Obrab. Met., 1984, vol. 13, pp. 10–20.

    Google Scholar 

  4. W. Jentzsch and S. Böhmer:Neue Hütte, 1979, vol. 24, pp. 249–53.

    CAS  Google Scholar 

  5. E. Metin, A.D. Romig Jr., O.T. Inal, and R.E. Semarge: inMicrobeam Analysis 1988, D.E. Newbury, ed. San Francisco Press Inc., San Francisco, CA, 1989, pp. 498–502.

    Google Scholar 

  6. D. Heger and D. Bergner:Härterei-Tech. Mitt., 1990, vol. 46, pp. 331–38.

    Google Scholar 

  7. Hong Du and J. Ågren:Mater. Sci. Forum, 1992, vol. 102–104, pp. 243–48.

    Google Scholar 

  8. A. Marciniak:Surf. Eng., 1985, vol. 1, pp. 283–88.

    Google Scholar 

  9. Z. Przylecki and L. Maldzinski: inCarbides, Nitrides and Borides, Poznan/Kolobrzeg, Poznan, Poland, 1987, pp. 153–162.

    Google Scholar 

  10. L. Maldzinski, Z. Przylecki, and J. Kunze:Steel Res., 1986, vol. 12, pp. 646–50.

    Google Scholar 

  11. K. Schwerdtfeger, P. Grieveson, and E.T. Turkdogan:Trans. AIME, 1969, vol. 245, pp. 2461–466.

    CAS  Google Scholar 

  12. B. Prenosil:Kovove Mater., 1965, vol. 3, pp. 69–87.

    CAS  Google Scholar 

  13. Yu.M. Lakhtin and Ya.D. Kogan:Nitriding of Steel, [(in Russian)] Mashinostroenie, Moscow, 1976.

    Google Scholar 

  14. L.S. Darken:Trans. AIME, 1948, vol. 175, pp. 184–94.

    Google Scholar 

  15. M.A.J. Somers and E.J. Mittemeijer:Surf. Eng., 1987, vol. 3, pp. 123–37.

    Google Scholar 

  16. W. Jost:Diffusion in Solids, Liquids and Gases, Academic Press Inc., New York, NY, 1960, pp. 71–72.

    Google Scholar 

  17. S. Crusius, G. Inden, U. Knoop, L. Höglund, and J. Ågren:Z. Metallkd., 1992, vol. 83, pp. 673–78.

    CAS  Google Scholar 

  18. J. Crank:The Mathematics of Diffusion, Clarendon Press, Oxford, 1956.

    Google Scholar 

  19. J. Colwell, G.W. Powell, and J.L. Ratliff:J. Mater. Sci., 1977, vol. 12, pp. 543–48.

    Article  CAS  Google Scholar 

  20. H.J. Grabke:Ber. Bunsengesell, Phys. Chem., 1969, vol. 73, pp. 596–601.

    CAS  Google Scholar 

  21. B.J. Kooi, M.A.J. Somers, and E.J. Mittemeijer: Delft University of Technology, Delft, The Netherlands, unpublished research, 1993.

  22. G.V. Kidson:J. Nucl. Mater., 1961, vol. 3, pp. 21–29.

    Article  CAS  Google Scholar 

  23. C. Wagner:Acta Metall., 1969, vol. 17, pp. 99–107.

    Article  CAS  Google Scholar 

  24. A.J. Hickl and R.W. Heckel:Metall. Trans. A, 1975, vol. 6A, pp. 431–40.

    CAS  Google Scholar 

  25. A.K. Sarkhell and L.L. Seigle:Metall. Trans. A, 1976, vol. 7A, pp. 899–902.

    Google Scholar 

  26. S.R. Shatynski, J.P. Hirth, and R.A. Rapp:Acta Metall., 1976, vol. 24, pp. 1071–78.

    Article  CAS  Google Scholar 

  27. D.S. Williams, R.A. Rapp, and J.P. Hirth:Metall. Trans. A, 1981, vol. 12A, pp. 639–52.

    Google Scholar 

  28. Guan-Xing Li and G.W. Powell:Acta Metall. 1985, vol. 33, pp. 23–31.

    Article  CAS  Google Scholar 

  29. E. Fromm:Z. Metallkd., 1966, vol. 57, pp. 60–65.

    CAS  Google Scholar 

  30. U. Roy:Acta Metall., 1968, vol. 16, pp. 243–53.

    Article  CAS  Google Scholar 

  31. C.M. Brakman, A.W.J. Gommers, and E.J. Mittemeijer:J. Mater. Res., 1989, vol. 4, pp. 1354–70.

    CAS  Google Scholar 

  32. A. Wells:J. Mater. Sci., 1985, vol. 20, pp. 2439–445.

    Article  CAS  Google Scholar 

  33. M.A.J. Somers, N.M. van der Pers, D. Schalkoord, and E. J. Mittemeijer:Metall. Trans. A, 1989, vol. 20A, pp. 1533–539.

    CAS  Google Scholar 

  34. G.F. Bastin, H.J.M. Heijligers, and F.J.J. van Loo:Scanning, 1984, vol. 6, pp. 58–68.

    CAS  Google Scholar 

  35. J.R.G. da Silva and R.B. McLellan:Mater. Sci. Eng., 1976, vol. 26, p. 83.

    Article  Google Scholar 

  36. H.C.F. Rozendaal, E.J. Mittemeijer, P.F. Colijn, and P.J. van der Schaaf:Metall. Trans. A, 1983, vol. 14A, pp. 395–99.

    Google Scholar 

  37. E.J. Mittemeijer, M. van Rooijen, I. Wierzyllowski, H.C.F. Rozendaal, and P.F. Colijn:Z. Metallkd., 1983, vol. 74, pp. 473–83.

    CAS  Google Scholar 

  38. M.A.J. Somers and E.J. Mittemeijer:Metall. Trans. A, 1990, vol. 21A, pp. 189–204.

    CAS  Google Scholar 

  39. Liu Cheng and E.J. Mittemeijer:Metall. Trans. A, 1990, vol. 21A, pp. 13–26.

    CAS  Google Scholar 

  40. M.A.J. Somers and E.J. Mittemeijer:Metall. Trans. A, 1990, vol. 21A, pp. 901–12.

    CAS  Google Scholar 

  41. H.H. Podgurski and H.W. Knechtel:Trans. AIME, 1969, vol. 245, pp. 1595–1602.

    CAS  Google Scholar 

  42. H.A. Wriedt:Trans. AIME, 1969, vol. 245, pp. 43–46.

    CAS  Google Scholar 

  43. H.J. Grabke:Ber. Bunsengesell. Phys. Chem., 1968, vol. 72, pp. 533–48.

    Google Scholar 

  44. B.J. Kooi, M.A.J. Somers, and E.J. Mittemeijer:Metall. Mater. Trans. A, in press.

  45. E. Lehrer:Z. Electrochem., 1930, vol. 36, pp. 383–92.

    CAS  Google Scholar 

  46. P. Ferguson and K.H. Jack:Proc. Heat Treatment ’81, The Metals Society, London, 1981, pp. 158–63.

    Google Scholar 

  47. D. Firrao, B. DeBenedetti, and M. Rosso:Metall. Ital., 1979, vol. 71, p. 373.

    CAS  Google Scholar 

  48. K.H. Jack:J. Appl. Cryst., 1952, vol. 5, pp. 404–11.

    Google Scholar 

  49. B. Pieraggi:Oxid. Met., 1987, vol. 27, pp. 177–185.

    Article  CAS  Google Scholar 

  50. L. Torchane, P. Bilger, J. Dulcy, and M. Gantois:Mater. Sci. Forum, 1994, vol. 163–165, pp. 707–12.

    Article  Google Scholar 

  51. A.M. Vredenberg: Ph.D. Thesis, University of Utrecht, 1991.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Somers, M.A.J., Mittemeijer, E.J. Layer-growth kinetics on gaseous nitriding of pure iron: Evaluation of diffusion coefficients for nitrogen in iron nitrides. Metall Mater Trans A 26, 57–74 (1995). https://doi.org/10.1007/BF02669794

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02669794

Keywords

Navigation