Skip to main content
Log in

Delayed hydride cracking behavior for ZIRCALOY-2 tubing

  • Published:
Metallurgical Transactions A Aims and scope Submit manuscript

Abstract

The delayed hydride cracking (DHC) behavior for ZIRCALOY-2 tubing was characterized at temperatures ranging from 93 °C to 288 °C. Testing was performed on the three types of pressure tubes that were used in the construction of the Hanford N Reactor, Richland, WA. A two-stage cracking response was observed for all tube types, with a very high K sensitivity in the threshold (stage I) regime followed by a region that was insensitive or moderately sensitive to the applied K level (stage II). The stage II crack velocity was a thermally activated process with an apparent activation energy of 68 kJ/mol. This energy level was consistent with the theoretical activation energy associated with hydrogen diffusion into the triaxial stress field ahead of a crack. Above a critical temperature of 180 °C, cracking occurred only when specimens were subjected to an overtemperature cycle. Below this critical temperature, DHC occurred regardless of whether specimens were heated or cooled to the test temperature. Differences in crack velocities and threshold responses for the various tube types were attributed primarily to variations in crystallo-graphic texture. Postirradiation testing revealed that irradiation to a fluence of 7.7 × 10(21) n/cm2 caused a 50-fold increase in crack growth rates. Metallographic and fractographic examinations were performed to understand operative DHC mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L.A. Simpson and CD. Cann:J. Nucl. Mater., 1979, vol. 87, pp. 303–16.

    Article  CAS  Google Scholar 

  2. C.J. Simpson and C.E. Elis:J. Nucl. Mater., 1974, vol. 52, pp. 289–95.

    Article  CAS  Google Scholar 

  3. A.H. Jackman and J.T. Dunn: Report No. AECL-5691, Atomic Energy of Canada Limited, Mississauga, ON, Canada, 1976.

    Google Scholar 

  4. E.C.W. Perryman:Nucl. Energy, 1978, vol. 17, pp. 95–105.

    CAS  Google Scholar 

  5. R. Dutton, K. Nuttall, M.P. Puls, and L.A. Simpson:Metall. Trans. A, 1977, vol. 8A, pp. 1553–62.

    CAS  Google Scholar 

  6. L.A. Simpson and K. Nuttall:Zirconium in the Nuclear Industry, ASTM STP 633, ASTM, Philadelphia, PA, 1977, pp. 608–29.

    Google Scholar 

  7. C.E. Coleman and J.F.R. Ambler:Zirconium in the Nuclear Industry, ASTM STP 633, ASTM, Philadelphia, PA, 1977, pp. 589–607.

    Google Scholar 

  8. E.G. Price and B.A. Cheadle:The Mechanism of Fracture, ASM, Metals Park, OH, 1985, pp. 511–19.

    Google Scholar 

  9. ASTM Standard E616-89, 1989Annual Book of ASTM Standards, ASTM, Philadelphia, PA, 1989, vol. 03.01.

  10. L.A. Simpson and M.P. Puls:Metall. Trans. A, 1979, vol. 10A, pp. 1093–1105.

    CAS  Google Scholar 

  11. K. Nuttall:Scripta Metall., 1977, vol. 11, pp. 55–58.

    Article  CAS  Google Scholar 

  12. W.J. Mills and F.H. Huang:Eng. Fract. Mech., 1991, vol. 39, pp. 241–57.

    Article  Google Scholar 

  13. C.E. Coleman:Zirconium in the Nuclear Industry: 5th Conf, ASTM STP 754, ASTM, Philadelphia, PA, 1982, pp. 393–411.

    Google Scholar 

  14. M.P. Puls, L.A. Simpson, and R. Dutton:Fracture Problems and Solutions in the Energy Industry, Pergamon Press, New York, NY, 1982, pp. 13–25.

    Google Scholar 

  15. K.F. Amouzouvi and L.J. Clegg:Metall. Trans. A, 1987, vol. 18A, pp. 1687–94.

    CAS  Google Scholar 

  16. D.G. Westlake:J. Nucl. Mater., 1968, vol. 26, pp. 208–16.

    Article  CAS  Google Scholar 

  17. L.A. Simpson and CD. Cann:J. Nucl. Mater., 1984, vol. 126, pp. 70–73.

    Article  CAS  Google Scholar 

  18. C.E. Coleman, S. Sagat, and K.F. Amouzouvi:Proc. Int. Symp. on Fracture Mechanics, Pergamon Press, New York, NY, 1988, pp. 293–304.

    Google Scholar 

  19. J.F.R. Ambler:Zirconium in the Nuclear Industry: 6th Int. Symp., ASTM STP 824, ASTM, Philadelphia, PA, 1984, pp. 653–74.

    Google Scholar 

  20. B.A. Cheadle, C.E. Coleman, and J.F.R. Ambler:Zirconium in the Nuclear Industry: 7th Int. Symp., ASTM STP 939, ASTM, Philadelphia, PA, 1987, pp. 224–40.

    Google Scholar 

  21. J.F.R. Ambler and C.E. Coleman:2nd Int. Congress on Hydrogen in Metals, Pergamon Press, Oxford, U.K., 1978, Paper 3C10.

    Google Scholar 

  22. D.O. Northwood and U. Kasasih:Int. Mater. Rev., 1983, vol. 28, pp. 92–121.

    CAS  Google Scholar 

  23. M.P. Puls: Report No. AECL-8381, Atomic Energy of Canada Limited, Pinawa, MB, Canada, 1984.

  24. M.P. Puls and A.J. Rogowski:Atomistics of Fracture, Plenum Press, New York, NY, 1983, pp. 789–94.

    Google Scholar 

  25. M.P. Puls:Acta Metall., 1984, vol. 32, pp. 1259–69.

    Article  CAS  Google Scholar 

  26. R.A. Holt:J. Nucl. Mater., 1979, vol. 82, pp. 419–29.

    Article  CAS  Google Scholar 

  27. J.J. Kearns: Report WAPD-TM-472, Westinghouse Electric Corporation, West Mifflin, PA, Nov. 1965.

  28. D.B. Knorr and R.M. Pelloux:J. Nucl. Mater., 1977, vol. 71, pp. 1–13.

    Article  CAS  Google Scholar 

  29. R. Ballinger and R.M. Pelloux:Mechanical Behavior of Materials, Pergamon Press, New York, NY, 1979, vol. 2, pp. 685–95.

    Google Scholar 

  30. J.E. Srawley:Int. J. Fract. Mech., 1976, vol. 12, pp. 475–76.

    Google Scholar 

  31. A. Saxena and S.J. Hudak, Jr.:Int. J. Fract., 1978, vol. 14, pp. 453–68.

    Article  Google Scholar 

  32. ASTM Standard E399-83, 1989Annual Book of ASTM Standards, ASTM, Philadelphia, PA, 1989, vol. 03.01.

  33. H.E. Kjarmo, H.E. Kissinger, L.A. Chariot, and E.R. Gilbert: Battelle Pacific Northwest Laboratory, Richland, WA, private communication, June 1988.

  34. J.R. Rice:Stress Corrosion Cracking and Hydrogen Embrittlement of Iron Base Alloy, NACE, Houston, TX, 1973, pp. 11–15.

    Google Scholar 

  35. R. Dutton, C.H. Woo, K. Nuttall, L.A. Simpson, and M.P. Puls:2nd Int. Congress of Hydrogen in Metals, Pergamon Press, Oxford, U.K., 1978, paper 3C6.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Formerly withWestinghouse Hanford Company

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, F.H., Mills, W.J. Delayed hydride cracking behavior for ZIRCALOY-2 tubing. Metall Trans A 22, 2049–2060 (1991). https://doi.org/10.1007/BF02669872

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02669872

Keywords

Navigation