Skip to main content
Log in

The evaluation of in-service materials degradation of low-alloy steels by the electrochemical method

  • Published:
Metallurgical Transactions A Aims and scope Submit manuscript

Abstract

The nondestructive evaluation procedure for detecting in-service materials degradation of low-alloy 2.25Cr-1Mo and CrMoV steels by the electrochemical method has been investigated. The results can be summarized as follows. (1) For 2.25Cr-1Mo steels, the peak current mainly caused by the selective dissolution of coarse carbides M6C appears at ∼+100 mV during potentiodynamic polarization measurements in dilute sodium molybdate solution. This peak value of current density, ΔIp, can be chosen as a reflective parameter of an amount of coarse carbides M6C and shows excellent correlations both with shifts in fracture appearance transition temperature (FATT) caused by carbide coarsening and with hardness change. Actual operational temperature can be estimated from operational period, since the Larson-Miller time-temperature parameter (LMP) value of materials has a unique relationship with ΔIp values. (2) For CrMoV steels, the evaluation of temper embrittlement of CrMoV cast steel by a novel electrochemical technique is described. Intergranular corrosion (IGC) occurs only on temper-embrittled samples during anodic polarization process in calcium nitrate solution. The characteristic changes in polarization curves attributed to IGC have an excellent correlation with shifts in FATT caused by temper embrittlement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N.S. Cheruvu:Metall. Trans. A, 1989, vol. 20A, pp. 87–97.

    CAS  Google Scholar 

  2. J.D. Baird, A. Jamieson, R.R. Peterson, and R.C. Cochrane:Proc. Conf. on The Creep Strength in Steel and High Temperature Alloys, Metals Society, London, 1973, pp. 207–15.

    Google Scholar 

  3. V.A. Biss and T. Wada:Metall. Trans. A, 1985, vol. 16A, pp. 109–14.

    CAS  Google Scholar 

  4. J.F. Knott:Fundamentals of Fracture Mechanics, Butterworth’s, London, 1979, pp. 195–97.

    Google Scholar 

  5. Z. Qu and K.H. Kuo:Metall. Trans. A, 1981, vol. 12A, pp. 1333–37.

    Google Scholar 

  6. F. Masuyama, N. Nishimura, and K. Setoguchi:Proc. 3rd Int. Conf. on Creep and Fracture of Engineering Materials and Structures, Pineridge Press, Swansea, U.K., 1987, pp. 879–94.

    Google Scholar 

  7. C.J. McMahon, Jr.:ASTM STP 407, 1968, pp. 127–67.

    Google Scholar 

  8. R. Viswanathan and A. Joshi:Metall. Trans. A, 1975, vol. 6A, pp. 2289–97.

    CAS  Google Scholar 

  9. N.S. Cheruvu and B.B. Seth:Metall. Trans. A, 1989, vol. 20A, pp. 2345–54.

    CAS  Google Scholar 

  10. R. Viswanathan, S.M. Breummer, and R.H. Richman:Proc. Int. Conf. Life Assessment and Extension, Nederlands Instituut voor Lasteckniek, The Hague, 1988, paper no. 2.5.1, pp. 92-98.

  11. T. Shoji and H. Takahashi: inLife Extension and Assessment of Fossil Power Plants, R.B. Dooley and R. Viswanathan, eds., EPRI CS 5208, Electric Power Research Institute, Palo Alto, CA, 1987, pp. 745–59.

    Google Scholar 

  12. K.W. Andrews, H. Hughes, and D.J. Dyson:J. Iron Steel Inst., 1972, vol. 210, pp. 337–50.

    CAS  Google Scholar 

  13. A.M. Abdel-Latif, J.M. Corbett, and D.M. Talpin:Met. Sci., 1982, vol. 16, pp. 90–96.

    CAS  Google Scholar 

  14. J. Nutting:AIME Proc. Topical Conf. on Ferritic Alloys for Use in the Nuclear Energy Technologies, J.W. Davis and D.J. Michel, eds., AIME, Warrendale, PA, 1983, pp. 3–16.

    Google Scholar 

  15. R.G. Baker and J. Nutting:J. Iron Steel Inst., 1959, vol. 192, pp. 257–68.

    CAS  Google Scholar 

  16. Jutta Kupper, Helmut Erhart, and Hans-Jurgen Grabke:Corros. Sci., 1981, vol. 21, pp. 227–38.

    Article  Google Scholar 

  17. R.H. Jones, B.W. Arey, D.R. Baer, and M.A. Friesel:Corrosion, 1989, vol. 45, pp. 494–502.

    CAS  Google Scholar 

  18. R. Viswanathan and S.M. Breummer:Trans. ASME, 1985, vol. 107, pp. 316–24.

    CAS  Google Scholar 

  19. R. Viswanathan:Damage Mechanisms and Life Assessment of High-Temperature Components, ASM INTERNATIONAL, Metals Park, OH, 1989, p. 294.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Watanabe, Y., Shoji, T. The evaluation of in-service materials degradation of low-alloy steels by the electrochemical method. Metall Trans A 22, 2097–2106 (1991). https://doi.org/10.1007/BF02669877

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02669877

Keywords

Navigation