Skip to main content
Log in

The role of aging reactions in the hydrogen embrittlement susceptibility of an HSLA steel

  • Published:
Metallurgical Transactions A Aims and scope Submit manuscript

Abstract

Hydrogen embrittlement susceptibility, as measured from room temperature precharged tensile specimens, indicates that the type, extent, and morphology of carbide precipitation are all important in determining the degree and mode of degradation. At equivalent charging conditions, embrittlement is virtually eliminated by aging to produce fine scale clustering of Ti(C, N), even when concurrent with cementite precipitation. High temperature aging (> 500 °C) results in exclusive precipitation of the alloy carbide, but also in a total loss of ductility due to a fracture mode transition to intergranular. This is shown to be associated with metalloid (P, S) segregation to grain boundaries accompanying depletion of Ti in solution. Intermediate behavior is observed in microstructures produced by high temperature quenching or aging at temperatures (∼ 400 °C) where only cementite precipitation is observed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. W. Thompson and I. M. Bernstein: “The Role of Metallurgical Variables in Hydrogen Assisted Environmental Fracture”, inAdvances in Corrosion Science and Technology, M. G. Fontana and R. W. Staehle, eds., Plenum Publishing Corp., 1980, vol. 7, pp. 53–175.

  2. H. K. Birnbaum: “Hydrogen Related Failure Mechanisms in Metals”, inEnvironment Sensitive Fracture of Engineering Materials, Z. A. Foroulis, ed., TMS-AIME, Warrendale, PA, 1979, pp. 326–60.

    Google Scholar 

  3. J. P. Hirth:Metall Trans. A, 1980, vol. 11A, pp. 861–90.

    CAS  Google Scholar 

  4. I. M. Bernstein and A. W. Thompson:Int. Met. Rev. (Rev 212), 1976, vol. 21, pp. 269–87,

    CAS  Google Scholar 

  5. I. M. Bernstein:Mater. Sci. Eng., 1970, vol. 6, pp. 1–19.

    Article  CAS  Google Scholar 

  6. H. K. Birnbaum: “Hydrogen Effects on the Fracture of BCC Metals”, inMechanical Properties of BCC Metals, M. Meshii, ed., TMS-AIME, Warrendale, PA, 1982, pp. 153–72.

    Google Scholar 

  7. A. W. Thompson and I. M. Bernstein: “Stress Corrosion Cracking and Hydrogen Embrittlement”, inMetallurgical Treatises, J. K. Tien and J. F. Elliott, eds., TMS-AIME, Warrendale, PA, 1981, pp. 589–601.

    Google Scholar 

  8. Y. Kikuta: inHydrogen Effects in Metals, I. M. Bernstein and Anthony W. Thompson, eds., TMS-AIME, Warrendale, PA, 1981, pp. 755–65.

    Google Scholar 

  9. K. Kiuchi and R. B. McClellan:Acta Metall., 1983, vol. 31, pp. 961–84.

    Article  CAS  Google Scholar 

  10. R. Gibala: inStress Corrosion Cracking and Hydrogen Embrittlement of Iron Base Alloys, NACE-5, Houston, TX, 1977, p. 244.

    Google Scholar 

  11. G. M. Pressouyre and I. M. Bernstein:Metall. Trans. A, 1981, vol. 12A, pp. 835–44.

    Google Scholar 

  12. G. M. Pressouyre and I. M. Bernstein:Metall. Trans. A, 1978, vol. 9A, pp. 1571–80.

    CAS  Google Scholar 

  13. G. M. Pressouyre and I. M. Bernstein:Corrosion Science, 1978, vol. 18, pp. 819–33.

    Article  CAS  Google Scholar 

  14. G. M. Pressouyre and I. M. Bernstein:Acta Metall., 1979, vol. 27, pp. 89–100.

    Article  CAS  Google Scholar 

  15. M. F. Stevens, I. M. Bernstein, and W. A. McInteer: inHydrogen Effects in Metals, I. M. Bernstein and Anthony W. Thompson, eds., TMS-AIME, Warrendale, PA, 1981, pp. 795–802.

    Google Scholar 

  16. S. M. Meyers, D. M. Follstaedt, and H. J. Rack:J. Appl. Phys., 1978, vol. 33, pp. 396–98.

    Google Scholar 

  17. J. Pillar, M. K. Miller, and S. S. Brenner:Trans. 29th Field Emission Symp., Gotheburg, Sweden, 1982, pp. 473–80.

  18. H. Erhart, H. J. Grabke, and R. Moller:Arch. Eisenhüttenwesen, 1981, vol. 54, no. 7, pp. 285–89.

    Google Scholar 

  19. J. I. Ustinovshchikov:Acta Metall., 1983, vol. 31, pp. 355–64.

    Article  CAS  Google Scholar 

  20. M. F. Stevens: Ph.D. Thesis, Carnegie-Mellon University, Pittsburgh, PA, 1984.

    Google Scholar 

  21. W. C. Leslie:The Physical Metallurgy of Steels, McGraw-Hill Book Co., New York, NY, 1981, p. 201.

    Google Scholar 

  22. G. R. Speich:Trans. AIME, 1969, vol. 245, p. 2553.

    CAS  Google Scholar 

  23. L. J. Cuddy, H. E. Knechtel, and W. C. Leslie:Metall. Trans., 1974, vol. 5, pp. 1979–2003.

    Article  Google Scholar 

  24. W. S. Owen:Trans. Am. Soc. Met., 1954, vol. 46, p. 812.

    Google Scholar 

  25. R. W. K. Honeycombe:Steels—Microstructure and Properties, Edward Arnold and ASM, Metals Park, OH, 1981, p. 152.

    Google Scholar 

  26. L. Meyer, F. Heisterkamp, and D. Lauterbora: inProcessing and Properties of Low Carbon Steel, TMS-AIME, 1973, pp. 279–320.

  27. Anthony W. Thompson and J. C. Chesnutt:Metall. Trans. A, 1979, vol. 10A, pp. 1193–96.

    CAS  Google Scholar 

  28. M. Cornet and S. Talbot-Besnard: in “Hydrogen in Metals”,Proc. 2nd JIM Int. Symp., Suppl. to Trans. Japan Inst. Met., 1980, p. 545.

  29. K. Yoshino and C.J. McMahon, Jr.:Metall. Trans., 1974, vol. 5, p. 363.

    CAS  Google Scholar 

  30. T. Tabata and H. K. Birnbaum:Scripta Met., 1984, vol. 18, pp. 231–36.

    Article  CAS  Google Scholar 

  31. T. Takeyama and H. Takahashi: “Nucleation of Crack and Microstructure Induced by Hydrogen”, inMechanical Properties of BCC Metals, M. Meshii, ed., TMS-AIME, Warrendale, PA, 1982, pp. 153–72.

    Google Scholar 

  32. R. C. Frank: inInternal Stresses and Fatigue in Metals, G. M. Rossweiler and W. L. Grube, eds., Elsevier, New York, NY, 1959, pp. 411, 424.

    Google Scholar 

  33. J. A. Donovan:Metall. Trans. A, 1976, vol. 7A, pp. 145–49.

    CAS  Google Scholar 

  34. C. Hwang: Ph.D. Thesis, Carnegie-Mellon University, Pittsburgh, PA, 1984.

    Google Scholar 

  35. Y. Takeda and C. J. McMahon, Jr.:Metall. Trans. A, 1981, vol. 12A, pp. 1255–66.

    Google Scholar 

  36. I. M. Bernstein:Metall. Trans., 1970, vol. 1, p. 3143.

    CAS  Google Scholar 

  37. F. Nakasato and I. M. Bernstein:Metall. Trans. A, 1978, vol. 9A, pp. 1317–26.

    CAS  Google Scholar 

  38. H. Kimura, H. Matsui, S. Takaki, A. Kimura, and K. Oguri: inMechanical Properties of BCC Metals, M. Meshii, ed., TMS-AIME, Warrendale, PA, 1982, pp. 125–33.

    Google Scholar 

  39. B. Craig and G. Krauss: inHydrogen Effects in Metals, I.M. Bernstein and Anthony W. Thompson, eds., TMS-AIME, Warrendale, PA, 1981, pp. 795–802.

    Google Scholar 

  40. T. D. Lee, T. Goldenberg, and J. P. Hirth:Metall. Trans., 1974, vol. 10, pp. 439–48.

    Google Scholar 

  41. T. Goldenberg, T. D. Lee, and J. P. Hirth:Metall. Trans. A, 1978, vol. 9A, pp. 1663–71.

    CAS  Google Scholar 

  42. H. Matsui, S. Moriya, and H. Kimura: in “Strength of Metals and Alloys”,Proc. 4th Int. Conf., 1976, vol. 1, p. 291.

    CAS  Google Scholar 

  43. H. Kimura, H. Matsui, and S. Moriya:Scripta Met., 1977, vol. 11, p. 473.

    Article  CAS  Google Scholar 

  44. W. Steven and K. Balajiva:J. Iron Steel Inst., 1959, vol. 178, p. 141.

    Google Scholar 

  45. C.J. McMahon:Proc. 4th Bolton Landing Conf., J. L. Walter, J. H. Westbrook, and D. A. Woodfrod, eds., Claitor’s Pub. Division, 1975, pp. 525–52.

  46. M. Guttman:Met. Sci., 1976, vol. 10, pp. 337–41.

    Article  Google Scholar 

  47. Z. Qu and C.J. McMahon, Jr.:Metall. Trans. A, 1983, vol. 14A, pp. 1101–08.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stevens, M.F., Bernstein, I.M. The role of aging reactions in the hydrogen embrittlement susceptibility of an HSLA steel. Metall Trans A 16, 1879–1886 (1985). https://doi.org/10.1007/BF02670375

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02670375

Keywords

Navigation