Skip to main content
Log in

Time-dependent deformation of metals

  • Published:
Metallurgical Transactions A Aims and scope Submit manuscript

Abstract

The basic characteristics of timedependent deformation of metals are described in terms of dislocation properties. At high temperatures, diffusion controlled climb of edge dislocations is the rate limiting process, whereas at low temperatures, other forms of recovery involving cross-slip of screw dislocations operate. A composite model of plastic flow is used to describe the coupling between these recovery processes. The model is patterned after the persistent slip band structures observed in cyclically deformed fcc single crystals. Screw dislocations are allowed to move in the cell interiors and to deposit edge dislocations into the adjoining walls. Cross-slip and climb lead to dislocation rearrangement and annihilation in the two regions. These processes are coupled not only through the dislocation microstructure, but also through the mechanics of the composite structure. The model is used to describe various deformation properties of metals, including stage II, stage III, and stage IV strain hardening and saturation of the flow stress. The coupling of cross-slip and climb controlled recovery processes leads to gradual transitions in strain hardening and gives a natural account of the transition from low temperature deformation to high temperature creep. The model also leads to polarized dislocation structures, internal stresses, and anelastic creep properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G.I. Taylor:Proc. Roy. Soc., 1934, vol. A145, pp. 362–87.

    Article  CAS  Google Scholar 

  2. E. Orowan:Zeit. Phys., 1934, vol. 89, pp. 605–59.

    Article  Google Scholar 

  3. H. Siethoff and W. Schroeter:Z. f. Metallk., 1984, vol. 75, pp. 475–91.

    CAS  Google Scholar 

  4. H. G. Brion and P. Haasen: Univ. of Göttingen, D-34 Göttingen, W. Germany, unpublished research, 1985.

  5. W. D. Nix and J. C. Gibeling: inFlow and Fracture at Elevated Temperatures, R. Raj, ed., ASM, Metals Park, OH, 1985, pp. 1–40.

    Google Scholar 

  6. A.H. Cottrell and R.J. Stokes:Proc. Roy. Soc., 1955, vol. A233, pp. 17–34.

    CAS  Google Scholar 

  7. O.D. Sherby, T. A. Trozera, and J.E. Dorn:Proc. ASTM, 1956, vol. 56, pp. 1–16.

    Google Scholar 

  8. S.S. Hecker and M. G. Stoudt: inDeformation, Processing and Structure, G. Krauss, ed., ASM, Metals Park, OH, 1982, pp. 1–46.

    Google Scholar 

  9. U.F. Kocks, A. S. Argon, and M.F. Ashby:Thermodynamics and Kinetics of Slip, Pergamon Press, Oxford, 1975, pp. 141–238.

    Google Scholar 

  10. H. Mecking and U.F. Kocks:Acta Metall., 1981, vol. 29, pp. 1865–76.

    Article  CAS  Google Scholar 

  11. O.D. Sherby, R.L. Orr, and J. E. Dorn:Trans. AIME, 1954, vol. 200, pp. 71–80.

    Google Scholar 

  12. R. L. Orr, O. D. Sherby, and J. E. Dorn:Trans. ASM, 1954, vol. 46, pp. 113–28.

    CAS  Google Scholar 

  13. O.D. Sherby:Acta Metall., 1962, vol. 10, pp. 135–47.

    Article  CAS  Google Scholar 

  14. O.D. Sherby and P.M. Burke:Prog. Materials Sci., 1968, vol. 13, pp. 325–90.

    Google Scholar 

  15. J. E. Bird, A. K. Mukherjee, and J. E. Dorn: inQuantitative Relation between Properties and Microstructure, D. G. Brandon and A. Rosen, eds., Israel University Press, Jerusalem, 1969, pp. 255–342.

    Google Scholar 

  16. A.K. Mukherjee, J. E. Bird, and J.E. Dorn:ASM Trans. Quart., 1969, vol. 62, pp. 155–342.

    CAS  Google Scholar 

  17. J. Weertman:J. Appl. Phys., 1955, vol. 26, pp. 1213–17.

    Article  CAS  Google Scholar 

  18. J. Weertman:J. Appl. Phys., 1957, vol. 28, pp. 362–64.

    Article  CAS  Google Scholar 

  19. J. Weertman: inCreep and Fracture of Engineering Materials and Structures, B. Wilshire and D.R. J. Owen, eds., Pineridge Press, Swansea, U.K., 1984, pp. 1–13.

  20. C.K.L. Davies, V. Sagar, and R. N. Stevens:Acta Metall., 1973, vol. 21, pp. 1343–52.

    Article  CAS  Google Scholar 

  21. D. Kuhlmann-Wildsorf:Metall. Trans. A, 1985, vol. 16A, pp. 2091–2108.

    Google Scholar 

  22. U. F. Kocks:ASME Journal of Materials and Technology, 1976, vol. 98, pp. 76–85.

    CAS  Google Scholar 

  23. H. Mecking, U. F. Kocks, B. Nicklas, and N. Zarubova: unpublished research.

  24. F. B. Prinz and A.S. Argon:Acta Metall., 1984, vol. 32, pp. 1021–28.

    Article  CAS  Google Scholar 

  25. G. Schoeck and A. Seeger:Report of the Bristol Conference on Defects in Crystalline Solids, Physical Society, London, 1955, pp. 340–46.

    Google Scholar 

  26. J. Bonneville and B. Escaig:Acta Metall., 1979, vol. 27, pp. 1477–86.

    Article  CAS  Google Scholar 

  27. J. Friedel: inDislocations and Mechanical Properties of Crystals, J.C. Fisher, W.G. Johnston, R. Thomson, and T. Vreeland, eds., John Wiley, New York, NY, 1957, pp. 330–32.

    Google Scholar 

  28. J.P. Poirier:Revue de Physique Appliquee, 1976, vol. 11, pp. 731–38.

    CAS  Google Scholar 

  29. H. Mughrabi, F. Ackermann, and K. Herz: inFatigue Mechanisms, ASTM STP675, J.T. Fong, ed., ASTM, Philadelphia, PA, 1979, pp. 69–81.

    Google Scholar 

  30. H. Mughrabi:Acta Metall., 1983, vol. 31, pp. 1367–80.

    Article  CAS  Google Scholar 

  31. W. D. Nix, J. C. Gibeling, and K. P. Fuchs: inMechanical Testing for Deformation Model Development, ASTM STP 765, R. W. Rhode and J. C. Swearengen, eds., ASTM, 1982, pp. 301–21.

  32. L.M. Brown: inDislocation Modelling of Physical Systems, M.F. Ashby, R. Bullough, C. S. Hartley, and J.P. Hirth, eds., Pergamon Press, Oxford, 1981, pp. 51–68.

    Google Scholar 

  33. H.J. Frost and M.F. Ashby:Deformation Mechanism Maps (The Plasticity and Creep of Metals and Ceramics), Pergamon Press, Oxford, 1982, pp. 20–29.

    Google Scholar 

  34. W. Blum, A. Absenger, and R. Feilhauer: inProceedings of ICSMA 5, Strength of Metals and Alloys, P. Haasen, V. Gerold, and G. Kostorz, eds., Pergamon Press, Oxford, 1979, pp. 265–70.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This paper is based on a presentation made at the symposium “50th Anniversary of the Introduction of Dislocations” held at the fall meeting of the TMS-AIME in Detroit, Michigan in October 1984 under the TMS-AIME Mechanical Metallurgy and Physical Metallurgy Committees.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nix, W.D., Gibeling, J.C. & Hughes, D.A. Time-dependent deformation of metals. Metall Trans A 16, 2215–2226 (1985). https://doi.org/10.1007/BF02670420

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02670420

Keywords

Navigation