Skip to main content
Log in

The mechanical stability of precipitated austenite in 9Ni steel

  • Published:
Metallurgical Transactions A Aims and scope Submit manuscript

Abstract

The strains inherent to the martensitic transformation of austenite particles in 9Ni steel create dislocation structures in the tempered martensite. These dislocation structures were studied by the complementary techniques of X-ray line profile analysis and transmission electron microscopy. The energy required to form these dislocation structures affects the thermodynamics of the transformation. We propose that changes in these dislocation structures reduce the “mechanical stability” of the austenite particles as they grow larger during isothermal tempering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. Fultz, J.I. Kim, Y. H. Kim, H. J. Kim, G. O. Fior, and J. W. Morris, Jr.:Metall. Trans. A, 1985, vol. 16A, p. 2237.

    CAS  Google Scholar 

  2. B.E. Warren and B.L. Averbach:J. Appl. Phys., 1950, vol. 21, p. 595.

    Article  CAS  Google Scholar 

  3. B. E. Warren:X-Ray Diffraction, Addison-Wesley, Reading, MA,1969, ch. 13.

    Google Scholar 

  4. B.E. Warren:Prog. Metal Phys., B. Chalmers and R. King, eds., 1959, Pergamon Press, New York, NY, vol. 8, p. 159.

    Google Scholar 

  5. W. A. Rachinger:J. Sci. Instr., 1948, vol. 25, p. 254.

    Article  Google Scholar 

  6. A. R. Stokes:Proc. Phys. Soc. London, 1948, vol. 61, p. 382.

    Article  CAS  Google Scholar 

  7. A. G. Khachaturyan:Sov. Phys. Cryst., 1960, vol. 5, p. 335.

    Google Scholar 

  8. M. Wilkens:Phys. Stat. Solidi, 1970, vol. 2, p. 359.

    Article  Google Scholar 

  9. M. A. Krivoglaz and K.P. Ryaboshapka:Fiz. Metal. Metalloved., 1963, vol. 15, p. 18.

    CAS  Google Scholar 

  10. S.I. Kwun and R. A. Fournelle:Metall. Trans. A, 1980, vol. 11A, p. 1429.

    CAS  Google Scholar 

  11. T. Ungar, H. Mughrabi, D. Ronnpagel, and M. Wilkens:Acta Metall, 1984, vol. 32, p. 333.

    Article  CAS  Google Scholar 

  12. B. Fultz, J. I. Kim, and J. W. Morris, Jr.: Univ. of Calif., Berkeley, CA, unpublished research, 1985.

  13. C. Kittel:Thermal Physics, John Wiley, New York, NY, 1969, p. 327.

    Google Scholar 

  14. L. Kaufman and M. Cohen:Prog. Metal Phys., B. Chalmers and R. King, eds., Pergamon Press, New York, NY, 1958, vol. 7, p. 165.

    Google Scholar 

  15. M. A. Krivoglaz and V.D. Sadovskiy:Fiz. Metal. Metalloved., 1964, vol. 18, p. 23.

    Google Scholar 

  16. L. V. Voronchikhin and I. G. Fakidov:Fiz. Metal. Metalloved., 1976, vol. 21, p. 119.

    Google Scholar 

  17. E.I. Estrin:Fiz. Metal. Metalloved., 1975, vol. 19, p. 119.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fultz, B., Morris, J.W. The mechanical stability of precipitated austenite in 9Ni steel. Metall Trans A 16, 2251–2256 (1985). https://doi.org/10.1007/BF02670424

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02670424

Keywords

Navigation