Skip to main content
Log in

An analysis of the nonisothermal tensile test

  • Published:
Metallurgical Transactions A Aims and scope Submit manuscript

Abstract

An analysis of the uniaxial tensile test which includes the effects of heat generation and transfer on flow behavior is presented. The analysis is based on the solution of modified versions of the onedimensional force equilibrium and heat conduction equations, subject to the appropriate boundary conditions. The stress biaxiality or triaxiality developed during necking is taken into account by including a Bridgman correction in the equilibrium expression. In order to obtain solutions of the coupled deformation-heat transfer problem, the governing equations were discretized to enable numerical calculations using a finite-difference scheme. The accuracy of the analysis was confirmed by comparison of model predictions with experimental data from nonisothermal tensile tests on 1008 aluminum-killed sheet steel. These and other simulations lead to the conclusion that temperature effects are most important following the onset of necking. The development of temperature gradients during necking can substantially decrease the tensile elongation and mitigate the stabilizing influence of positive strain rate sensitivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Z. Marciniak:Aspects of Material Formability, McMaster University, Hamilton, ON, Canada, 1974.

    Google Scholar 

  2. S. L. Semiatin and J. J. Jonas:Formability and Workability of Metals: Plastic Instability and Flow Localization, ASM, Metals Park, OH, 1984.

    Google Scholar 

  3. S. Y. Chung and H.W. Swift:Proc. Inst. Mech. Engrs., 1951, vol. 165, p. 199.

    Google Scholar 

  4. J.M. Alexander:Metallurgical Reviews, 1960, vol. 5, p. 349.

    Google Scholar 

  5. W. A. Backofen:Deformation Processing, Addison-Wesley, Reading, MA, 1972.

    Google Scholar 

  6. R. L. Whiteley:Trans. ASM, 1960, vol. 52, p. 154.

    CAS  Google Scholar 

  7. W. A. Backofen, W. F. Hosford, and J. J. Burke:Trans. ASM, 1962, vol. 55, p. 264.

    CAS  Google Scholar 

  8. W. F. Hosford and W. A. Backofen:Fundamentals of Deformation Processing, W. A. Backofen, J. J. Burke, L. F. Coffin, N. L. Reed, and V. Weiss, eds., Syracuse University Press, Syracuse, NY, 1964, p. 259.

    Google Scholar 

  9. S. S. Hecker:Metals Eng. Quart., 1974, vol. 14, no. 4, p. 30.

    Google Scholar 

  10. A.K. Ghosh:Metals Eng. Quart., 1975, vol. 15, no. 3, p. 53.

    CAS  Google Scholar 

  11. Z. Marciniak and K. Kuczynski:Inter. J. Mech. Sci., 1967, vol. 9, p. 609.

    Article  Google Scholar 

  12. G. E. Dieter:Workability Test Techniques, ASM, Metals Park, OH, 1984.

    Google Scholar 

  13. N. M. Wang and M. L. Wenner:Mechanics of Sheet Metal Forming, D. P. Koistinen and N. M. Wang, eds., Plenum Press, New York, NY, 1978, p. 367.

    Google Scholar 

  14. Z. Marciniak, K. Kuczynski, and T. Pokora:Inter. J. Mech. Sci., 1973, vol. 15, p. 789.

    Article  Google Scholar 

  15. A.K. Ghosh:Mechanics of Sheet Metal Forming, D. P. Koistinen and N. M. Wang, eds., Plenum Press, New York, NY, 1978, p. 287.

    Google Scholar 

  16. G. Ferron:Mat. Sci. and Eng., 1981, vol. 49, p. 241.

    Article  CAS  Google Scholar 

  17. W.G. Granzow:Proc. Tenth IDDRG Biennial Congress, Portcullis Press, Ltd., Redhill, Surrey, UK, 1978, p. 127.

    Google Scholar 

  18. C. G’sell, N.A. Aly-Helal, and J.J. Jonas:J. Mat. Sci., 1983, vol. 18, p. 1731.

    Article  CAS  Google Scholar 

  19. C. G’sell, A. Marquez-Lucero, P. Gilormini, and J.J. Jonas:Acta Metall., 1985, vol. 33, p. 759.

    Article  Google Scholar 

  20. S. L. Semiatin, A. K. Ghosh, and J. J. Jonas:Metall. Trans. A, 1985, vol. 16A, p. 2291.

    Google Scholar 

  21. E. Rauch: M. Eng. Thesis, Department of Mining and Metallurgical Engineering, McGill University, Montreal, PQ, Canada, 1983.

  22. E. Rauch, G. R. Canova, J. J. Jonas, and S.L. Semiatin:Acta Metall., 1985, vol. 33, p. 465.

    Article  Google Scholar 

  23. P. W. Bridgman:Studies in Large Plastic Flow and Fracture, McGraw-Hill, New York, NY, 1952, ch. 1.

    Google Scholar 

  24. H.S. Carslaw and J. C. Jaeger:Conduction of Heat in Solids, Clarendon Press, Oxford, 1959.

    Google Scholar 

  25. R.B. Bird, W. E. Stewart, and E.N. Lightfoot:Transport Phenomena, Wiley, New York, NY, 1960.

    Google Scholar 

  26. R. A. Ayres:Metall. Trans. A, 1985, vol. 16A, p. 37.

    Google Scholar 

  27. J.F.W. Bishop:Quart. J. Mech. and Appl. Math., 1956, vol. 9, p. 236.

    Article  Google Scholar 

  28. G. D. Lahoti and T. Altan:J. Eng. Mat. Techn., Trans. ASME, 1975, vol. 97, p. 113.

    Google Scholar 

  29. R. H. Wagoner and N. M. Wang:Metall. Trans. A, 1983, vol. 14A, p. 2395.

    Google Scholar 

  30. R.H. Wagoner:Scripta Metallurgica, 1981, vol. 15, p. 1135.

    Article  CAS  Google Scholar 

  31. S. L. Semiatin: unpublished research, Battelle’s Columbus Laboratories, Columbus, OH, 1981.

  32. A.K. Ghosh:Metall. Trans. A, 1977, vol. 8A, p. 1221.

    CAS  Google Scholar 

  33. B. Bardes:Metals Handbook, Vol. 1: Properties and Selection: Irons and Steels, 9th ed., ASM, Metals Park, OH, 1978.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Semiatin, S.L., Ayres, R.A. & Jonas, J.J. An analysis of the nonisothermal tensile test. Metall Trans A 16, 2299–2308 (1985). https://doi.org/10.1007/BF02670430

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02670430

Keywords

Navigation