Skip to main content
Log in

Effect of cooling rate after hot rolling and of multistage strain aging on the drawability of low-carbon-steel wire rod

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Tensile testing was used to simulate the multistage strain aging occurring in low-C steel during the relatively short intervals between dies in a multiple-die wire-drawing machine. The effects were examined of three simulated post-hot-rolling cooling rates and three thermal treatments on the strain-aging susceptibility of a high- and a low-N steel. This was measured by applying a 6 pct tensile strain, followed by aging at either 65° or 100 °C for 20 seconds, and then pulling the specimen to failure at room temperature. Increases in flow stress and decreases in the elongation to fracture both indicated high susceptibility to strain aging. It was found that the nitrogen content, the cooling rate from the hot-rolling temperature to about 300 °C, as well as the cooling rate below 300 °C, all have dramatic effects on the strain-aging behavior. Moreover, multistage strain aging is more severe than single-stage strain aging. The implications of these observations on increasing the drawability of low-carbon-steel wire are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A.E. Ranger:J. Iron Steel Inst., 1957, vol. 185, pp. 383–88.

    Google Scholar 

  2. G.M. Sturgeon and V.H. Guy:J. Iron Steel Inst., 1963, vol. 201, pp. 437–44.

    Google Scholar 

  3. T. Altan, S.-I. Oh, and H.L. Gegel:Metal Forming: Fundamentals and Applications, McGraw-Hill, New York, NY, 1983, p. 91.

    Google Scholar 

  4. K. Lange:Handbook of Metal Forming, McGraw-Hill, New York, NY 1985, p. 14.11.

    Google Scholar 

  5. E.R. Morgan and J.C. Shyne:Trans. AIME, J. Met., 1957, vol. 209, pp. 65–69.

    Google Scholar 

  6. J.F. Butler:Trans. TMS-AIME, 1962, vol. 224, pp. 89–96.

    CAS  Google Scholar 

  7. E.T. Stephenson:Trans. ASM, 1962, vol. 55, pp. 624–39.

    CAS  Google Scholar 

  8. E.T. Stephenson:Trans. ASM, 1969, vol. 62, pp. 490–501.

    CAS  Google Scholar 

  9. W.C. Leslie and L. Rickett:Trans. AIME, J. Met., 1953, vol. 197, pp. 1021–31.

    Google Scholar 

  10. E.R. Morgan:Proc. Int. Symp. The Annealing of Low Carbon Steel—Cleveland, Case Institute of Technology, Cleveland, OH, 1957, pp. 19–28.

    Google Scholar 

  11. W.C. Leslie:The Physical Metallurgy of Steel, McGraw-Hill, New York, NY, 1983, p. 68.

    Google Scholar 

  12. M. Dunand and L. Roesch:Revue de Metallurgie —CIT, 1987, vol. 84, pp. 471–82 (in French).

    CAS  Google Scholar 

  13. R. McCallum, J.J. Jonas, and S. Yue:Wire J. Int., 1993, vol. 27, pp. 102–07.

    Google Scholar 

  14. S.T. Mandziej:Scripta Metall., 1992, vol. 27, pp. 793–98.

    Article  CAS  Google Scholar 

  15. E.O. Hall:Yield Point Phenomena in Metals and Alloys, Plenum Press, New York, NY, 1970, p. 53.

    Google Scholar 

  16. R. Borrelly and D. Benkirat:Acta Metall., 1985, vol. 33, pp. 855–66 (in French).

    Article  CAS  Google Scholar 

  17. ASTM Standard E 8M-89b,Annual Book of ASTM Standards, ASTM, Philadelphia, PA, 1990, vol. 01.02.

  18. J.D. Baird:Metall. Rev., 1971, vol. 16, pp. 1–18.

    Google Scholar 

  19. A.H. Cottrell and B.A. Bilby:Proc. Phys. Soc, 1949, Ser. A, vol. 62, pp. 49–62.

    Google Scholar 

  20. B.B. Hundy:Metallurgica, 1956, vol. 53, pp. 203–11.

    CAS  Google Scholar 

  21. D.V. Wilson and B. Russell:Acta Metall., 1960, vol. 8, pp. 36–45.

    Article  CAS  Google Scholar 

  22. D.V. Wilson and B. Russell:Acta Metall., 1960, vol. 8, pp. 468–79.

    Article  CAS  Google Scholar 

  23. B.A. Senior, F.W. Noble, and B.L. Eyre:Acta Metall., 1986, vol. 34, pp. 1321–27.

    Article  CAS  Google Scholar 

  24. J. Foct, P. Rochegude, and A. Hendry:Acta Metall., 1988, vol. 36, pp. 501–05.

    Article  CAS  Google Scholar 

  25. Z.-L. Pan, I.G. Ritchie, and N. Bailey: in ASTM STP1169: Mechanics and Mechanisms of Material Damping, V.K. Kinra and A. Wolfenden, eds., ASTM, Philadelphia, PA, pp. 535–47.

    Google Scholar 

  26. A. Karimi Taheri:Proc. 1st Int. Conf. Processing Materials for Properties, Honolulu (PMP ’93), H. Henein and T. Oki, eds., TMS-AIME, Warrendale, PA, 1993, pp. 959–62.

    Google Scholar 

  27. A. Okamoto and H. Abe:Trans. Iron Steel Inst. Jpn., 1987, vol. 27, p. 318.

    Google Scholar 

  28. J.H. Palm:Trans. Nat. Aeronautical Research Inst., Amsterdam, 1949, vol. 15, Report No. M.1230.

  29. B.B. Hundy and T.D. Boxall:Metallurgica, 1957, vol. 55, pp. 27–30.

    Google Scholar 

  30. D.K. Felbeck, W.G. Gibbons, and W.G. Ovens:Trans. ASME, J. Basic Eng., 1965, vol. 87, pp. 319–24.

    CAS  Google Scholar 

  31. S.M. Pickard and F. Guiu:Acta Metall., 1990, vol. 38, pp. 397–401.

    Article  CAS  Google Scholar 

  32. W.C. Leslie and A.S. Keh: inProc. 6th Mechanical Working and Steel Processing Conf., Chicago, IL, ISS-AIME, Warrendale, PA, 1965, pp. 337–77.

    Google Scholar 

  33. P.N. Richard and K.V. Barratt:Trans. ASM, 1965, vol. 58, pp. 601–10.

    Google Scholar 

  34. A. Josefsson and B. Backstrom:Iron Steel, 1966, vol. 39, pp. 43–49.

    CAS  Google Scholar 

  35. W.R. Thomas and G.M. Leak:Proc. Phys. Soc, 1955, vol. B68, pp. 1001–07.

    Google Scholar 

  36. A.H. Cottrell and G.M. Leak:J. Iron Steel Inst., 1952, vol. 172, pp. 301–06.

    CAS  Google Scholar 

  37. G. Lagerberg and B.S. Lement:Trans. ASM, 1958, vol. 50, pp. 141–62.

    Google Scholar 

  38. I.P. Kemp, G. Pollard, and A.N. Bramley:Mater. Sci. Technol., 1990, vol. 6, pp. 331–37.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Taheri, A.K., Maccagno, T.M. & Jonas, J.J. Effect of cooling rate after hot rolling and of multistage strain aging on the drawability of low-carbon-steel wire rod. Metall Mater Trans A 26, 1183–1193 (1995). https://doi.org/10.1007/BF02670614

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02670614

Keywords

Navigation